
User’s Guide
Version 1

For Use with Simulink®

Simulink Parameter
Estimation

P
R
E
L
IM

IN
A
R
Y

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Simulink Parameter Estimation User’s Guide
 COPYRIGHT 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: June 2004 First printing New for Version 1 (Release 14)

i

Contents

1
Introduction

What Is the Parameter Estimation Blockset 1-2

Installation . 1-3

Demos . 1-4

2
Getting Started

Introduction . 2-2

Setting Up the Estimation Problem . 2-3
Importing Transient Data . 2-5
Specifying Operating Conditions . 2-6
Selecting Parameters for Estimation . 2-8

Selecting Views for Plotting . 2-9

Running an Estimation . 2-10
Adding Data Sets . 2-10
Specifying and Setting Up Parameters 2-11
Opening the Estimation Window . 2-12
Running the Estimation . 2-14

Setting Options for Optimization . 2-17
Selecting Optimization Methods . 2-17
Selecting Optimization Termination Options 2-18
Selecting Additional Optimization Options 2-18
Specifying the Cost Function . 2-19

Setting Options for the Simulation . 2-20

ii Contents

Selecting Solvers . 2-20

3
Adaptive Look-Up Tables

Lookup Tables . 3-2

Adaptive Lookup Tables . 3-3

Implementation of Adaptive Lookup Tables 3-4
Adaptive Lookup Table Library . 3-5
Using Adaptive Lookup Tables in Simulink Models 3-6
Real-Time Lookup Tables . 3-6
Setting Adaptive Lookup Table Parameters 3-7

Example: N-D Adaptive Lookup Table 3-9
Running the Example . 3-10

4
Estimating From the Command Line

Introduction . 4-2

Example: Estimating Parameters
and Initial Conditions of the F14 Model 4-4

Baseline Simulation . 4-5
Creating a Transient Experiment Object 4-6
Creating Parameter Objects for Estimation 4-7
Assigning Experimental Data
to Inputs and Outputs of the Model . 4-9
Creating an Estimation Object
and Running the Estimation . 4-9

Creating and Customizing Estimation Projects 4-12

iii

Creating a Transient Data Object . 4-13
Properties of Transient Data Objects . 4-13
Modifying Transient Data Object Properties 4-16
Using Class Methods . 4-16
Helper Functions: Seven Ways to Represent
Sampling Instants . 4-17
Method for Logging Internal Block Signals. 4-18

Creating Parameter Objects . 4-19
Constructor . 4-19
Properties of Parameter Objects . 4-19
Example: F14 Model . 4-21
Example: Gain Matrix . 4-21
Modifying Properties . 4-21
Using Class Methods . 4-22

Creating State Data Objects . 4-23
Properties of the State Data Object . 4-23
Example: Initial Condition Data . 4-24
Modifying Properties . 4-25
Using Class Methods . 4-25

Creating Transient Experiment Objects 4-26
Properties of Transient Experiment Objects 4-27
Example: Creating an f14 Experiment 4-27
Example: Creating f14 Experiment Using Block Names 4-28
Example: Creating Van der Pohl Experiment From
User Objects . 4-28
Modifying Properties . 4-29
Using Class Methods . 4-29

iv Contents

5
Block Reference

Index

1

Introduction

What Is the Parameter Estimation
Blockset (p. 1-2)

A brief description of the product

Installation (p. 1-3) How to install the Parameter Estimation Blockset

Demos (p. 1-4) How to run Simulink Parameter Estimation demos

1 Introduction

1-2

What Is the Parameter Estimation Blockset
The Parameter Estimation Blockset (PEB) is a Simulink® based product for
estimating/calibrating model parameters from experimental data. This
product supports

• DC Estimation—Tune DC parameters (e.g., resistance in RLC circuit) to best
match the steady-state values observed at different operating points.
Transients are ignored and trimming is used to obtain steady-state values
from the Simulink model.

• Transient Estimation—Estimate parameters by comparing model output
history and experimental data for a given input.

• Adaptive Look-Up Tables—Estimate the table values at the prescribed
breakpoints using measurements from the physical system.

The Parameter Estimation Blockset provides graphical user interfaces (GUIs)
to do the following:

• Set up the problem

• Specify which model parameters to estimate

• Import and preprocess the experimental data

• Follow the estimation progress

• Validate the estimation results through various plots

Installation

1-3

Installation
Instructions for installing the Parameter Estimation Blockset can be found in
the MATLAB® Installation documentation for your platform. We recommend
that you store the files from this toolbox in a subdirectory named paramest
under the main matlab directory. To determine if the Parameter Estimation
Blockset is already installed on your system, check for a subdirectory named
paramest within the main blockset directory or folder.

1 Introduction

1-4

Demos
The Parameter Estimation Blockset provides demonstration files that show
you how to use the blockset to perform control design tasks in various settings.
To run these demos, type

demo

at the MATLAB prompt. This opens the Demos pane in the Help browser.
Select Blocksets and then Parameter Estimation to see a list of available
demos. Alternatively, if you have the Help browser open, you can select the
Demos pane directly and follow the same procedure.

2

Getting Started

Introduction (p. 2-2) The estimation problem

Setting Up the Estimation Problem
(p. 2-3)

What needs to be initialized to run an estimation

Running an Estimation (p. 2-10) Steps involved in the actual estimation of parameters and
initial conditions

Selecting Views for Plotting (p. 2-9) Plotting cost functions

Setting Options for the Simulation
(p. 2-20)

How to select simulation time and solvers for your
Simulink model to use while estimation occurs

Setting Options for Optimization
(p. 2-17)

Fine tuning the optimization process for your estimation

2 Getting Started

2-2

Introduction
Simulink Parameter Estimation compares empirical data with data generated
by a Simulink model. Using optimization techniques, it estimates states and/or
parameters so that a user-defined cost function, typically involving the
mean-square error between the two data signals, is minimized.

Note It is not necessary that you have a strong background in optimization
theory or practice, but as you gain insight into the use of Simulink Parameter
Estimation, you may find it helpful to consult the Optimization Toolbox User’s
Guide for more details about optimization algorithms.

Setting Up the Estimation Problem

2-3

Setting Up the Estimation Problem
Before beginning the estimation process, you must set up the problem so that
the appropriate parameters, solvers, cost functions, etc., are in place. Simulink
Parameter Estimation provides a GUI that makes this setup process quick and
easy. This section describes how to use this GUI to do a complete setup.

To show the steps of the setup, open a nonlinear model of an automotive
engine’s idle speed by typing

engine_idle_speed

at the MATLAB prompt. This model opens.

2 Getting Started

2-4

To open the Control and Estimation Tools Manager, select Parameter
Estimation from the engine idle speed model’s Tools menu.

Control and Estimation Tools Manager

You can use the Simulink Control and Estimation Tools Manager to specify:

• Parameters to be estimated

• Cost functions

• Experimental data to be matched by your Simulink model

• Initial operating conditions (initial conditions) of your model

Setting Up the Estimation Problem

2-5

Importing Transient Data
To import measured (empirical) data, select Transient Data under the
Estimation Task folder in the Control and Estimation Tools Manager.
Right-click on Transient Data and select Add to create a new data set. The
engine speed model has measured data included with it in an array called
iodata. Click Edit in the Transient Data Sets panel to open a data panel in the
tools manager.

Data Importing in the Simulink Control and Estimation Tools Manager

The iodata array contains 2 columns, the first for input data and the second
for output data. Time is stored in a separate array called time. Starting with

2 Getting Started

2-6

the Input Data tab, double-click on the Data cell and click Import. This opens
the Data Import window.

Use the Data Import Window to Select Your Data

To import input data, select iodata from the list of variable names, then enter
1 in the Assign columns field. Then click Import.

To import the time vector, follow the same procedure using the Time/Ts cell.
To import the output data, select the Output Data tab and enter the data in
the Output Data cell. Use the second column of the iodata array; that is,
specify 2 is the Assign columns field.

Specifying Operating Conditions
To see the default operating points, both initial states and inputs, select
Default Operating Points from the Operating Points folder in the left panel of

By default, the Data Import window looks at all files and
variables in the MATLAB workspace. You can specify
searches for MAT-files, Micorsoft Excel (XLS) files, CSV files,
or ASCII flat files.

List of available data.

In the case of multi-column data, select the column(s) you
want to import.

If your array is transposed, that is, if the data is organized
in rows instead of columns, specify row numbers here.

Setting Up the Estimation Problem

2-7

the Simulink Control and Estimation Tools Manager. All default values are
changeable, but for this example, use the default values.

Specify New Initial Conditions on the Operating Points Page

If you want to import new initial conditions from your Simulink model, click
Sync with model.

2 Getting Started

2-8

Selecting Parameters for Estimation
To select parameters for estimation, select the Variables node. When the
Global Parameters page opens, click Add to open the Select Parameters
window.

Select Parameters Window

For this example, select the last four: gain1, gain2, gain3, and mean_speed. In
general estimations you can, of course, select fewer or more variables. Often, it
is more practical to estimate a small group of parameters and use the final
estimated values as a starting point for further estimation of other, trickier
parameters. Making these sorts of choices involves experience, intuition, and a
solid understanding of your Simulink model’s strengths and limitations.

By default, Select Parameters window looks at all
variables in the MATLAB workspace.

List of available data.

Use your mouse to select data. Hold Shift down to
select adjacent parameters. Hold Ctrl down to select
non-adjacent parameters.

Selecting Views for Plotting

2-9

Selecting Views for Plotting
You can watch the minimization process occur by right-clicking on Views and
selecting Add. In the views window that opens, click Edit to open the View
Setup tab.

Check Plot in the Options panel, and then click Show Plots. This opens a plot
window for the cost function. When you run your estimation, the plot updates
automatically.

2 Getting Started

2-10

Running an Estimation
You are now ready to set up and run an estimation.

Adding Data Sets
Select Estimation from the directory tree and then right-click Add.

Select New Data to add your engine data to the estimation.

Running an Estimation

2-11

Specifying and Setting Up Parameters
You can use the Parameters window to select which parameters to estimate
and the range of values for the estimation.

Select the parameters you want to estimate in the Estimate column. Enter
initial values for your estimation parameters in the Initial Guess column. The
default values in the Minimum and Maximum columns are -Inf and Inf,
respectively, but you can select any range you want. If you have good reason to
believe a parameter lies within a finite range, it is usually best not to use the
default minimum and maximum values. Often there is computational
advantage in specifying finite bounds if you can.

For this example, set gain1 to 10, gain2 to 100, gain3 to 50, and mean_speed
to 500. Or, use any initial values you like.

2 Getting Started

2-12

Opening the Estimation Window
Select the Estimation tab to open the Estimation window.

Before you start, you can select optimization settings to specify various
algorithm features. See “Selecting Optimization Methods” on page 2-17 for
more information.

Running an Estimation

2-13

Display Options
Clicking Display Options opens this window.

By default, all boxes are checked. Uncheck any
feature that you don’t want to view during the
estimation process.

2 Getting Started

2-14

Running the Estimation
Click Start to begin the estimation. At the end of the iterations, the window
should look something like this.

Running an Estimation

2-15

The Estimation page displays each iteration of the optimization algorithm. To
see the final values for the parameters, go to the Parameters page.

The final values are

• gain1 = 124.44
• gain2 = 24.591
• gain3 = 20.442
• mean_speed = 730.37

2 Getting Started

2-16

The cost function minimization is plotted below.

If the optimization went well, you should see your cost function converge on a
minimum value.

Setting Options for Optimization

2-17

Setting Options for Optimization
There are several options that can be set to tune the results of the optimization,
including the optimization algorithm and the tolerances the algorithms use. To
set options for optimization select Optimization -> Optimization Options in
the Signal Constraint window.

Selecting Optimization Methods
Both the algorithm and model size define the optimization method. For the
Algorithm parameter, the two options are Function Minimization and
Simplex Search. Function Minimization uses the Optimization Toolbox
function fmincon to optimize the response signal subject to the constraints.
Simplex Search uses the Optimization Toolbox function fminsearch, a direct
search method, to optimize the response. Simplex Search is most useful for
simple problems and is sometimes faster than Function Minimization for
models that contain discontinuities. By default, the Model Size parameter is
set to Medium Scale. When the model is very large and Function Minimization
is selected as the optimization algorithm, Model Size can be changed to Large
Scale to increase computation speed. See the Optimization Toolbox
documentation for more information about the optimization methods.

2 Getting Started

2-18

Selecting Optimization Termination Options
There are also several options that define when the optimization will
terminate:

• Parameter tolerance—Optimization will terminate when successive
parameter values change by less than this number.

• Constraint tolerance—This number represents the maximum amount by
which the constraints can be violated and still allow a successful
convergence.

• Function tolerance—The optimization will terminate when successive
function values are less than this value. Changing the default Function
tolerance value is only useful when you are tracking a reference signal or
using the Simplex Search algorithm.

• Maximum iterations—The maximum number of iterations allowed. The
optimization will terminate when the number of iterations exceeds this
number.

By varying these parameters you can force the optimization to continue
searching for a solution or to continue searching for a more accurate solution.

Selecting Additional Optimization Options
Additional options for optimization include

• Display level—This option specifies the form of the output that appears in
the Optimization Progress window. The options are Iter which displays
information after each iteration, Off which turns off all output, Notify
which displays output only if the function does not converge, and Final
which only displays the final output. Refer to the Optimization Toolbox
documentation for more information on what type of iterative output each
algorithm displays.

• Restarts—In some optimizations the Hessian may become ill-conditioned
and the optimization does not converge. In these cases it is sometimes useful
to restart the optimization after it stops, using the end-point of the previous
optimization as the starting point for the next one. To automatically restart
the optimization, indicate the number of times you want to restart in this
field.

Setting Options for Optimization

2-19

• Gradient Type—When using Function Minimization as the Algorithm,
Simulink Response Optimization calculates gradients based on finite
difference methods. The Refined method offers a more robust and less noisy
gradient calculation method than Basic although it does take longer to run
optimizations using the Refined method and it is usually only useful when a
fixed-step solver is being used.

Specifying the Cost Function
The cost function is a function that optimization algorithms attempt to
minimize. You have the following options when selecting a cost function.

• Cost function—The default is SSE (steady-state error), which uses a
least-squares approach.

• Use robust cost— Makes the optimizer use a robust cost function instead of
the default least-squares cost. This is useful if the experimental data has
many outliers.

2 Getting Started

2-20

Setting Options for the Simulation
To optimize the response signals of a model, Simulink Response Optimization
runs simulations of the model. You can set options for these simulations by
selecting Optimization -> Simulation Options in the Signal Constraint
window.

By default, the Start time and Stop time are automatically computed based on
the start and stop times used in the model. To specify alternative start and stop
times for the response optimization, enter them under Simulation Time.

Selecting Solvers
When running the simulation, Simulink solves the dynamic system using one
of several solvers. You can specify several Solver Options. The Type of solver
can be Variable-step or Fixed-step. Variable-step solvers keep the error
within specified tolerances by adjusting the step-size the solver uses.
Fixed-step solvers use a constant step-size. When your model’s state’s are
likely to vary rapidly, a variable-step solver is often faster.

Variable-Step Solvers
When you select Variable-step, you can choose any of the following as the
Solver:

Setting Options for the Simulation

2-21

• discrete (no continuous states)
• ode45 (Dormand-Prince)
• ode23 (Bogacki-Shampine)
• ode113 (Adams)
• ode15s (stiff/NDF)
• ode23s (stiff/Mod. Rosenbrock)
• ode23t (Mod. stiff/Trapezoidal)
• ode23tb (stiff/TR-BDF2)

See the Simulink documentation for information on these solvers.

Variable-Step Solver Options
When you select Variable-step, you can also set several other parameters that
affect the step-size of the simulation:

• Maximum step size: the largest step-size Simulink can use during a
simulation

• Minimum step size: the smallest step-size Simulink can use during a
simulation

• Initial step size: the step-size Simulink uses to begin the simulation

• Relative tolerance: the largest allowable relative error at any step in the
simulation

• Absolute tolerance: the largest allowable absolute error at any step in the
simulation

• Zero crossing control: set to on for the solver to compute exactly where the
signal crosses the x-axis. This is useful when using functions that are
non-smooth and the output depends on when a signal crosses the x-axis, such
as absolute values.

By default, Simulink automatically chooses values for these options. To choose
your own values, enter them in the appropriate fields. For more information on
these options, and the circumstances in which to use them, see the Simulink
documentation.

Fixed-Step Solvers
When you select Fixed-step, you can choose any of the following as the Solver:

• discrete (no continuous states)

2 Getting Started

2-22

• ode5 (Dormand-Prince)
• ode4 (Runge-Kutta)
• ode3 (Bogacki-Shanpine)
• ode2 (Heun)
• ode1 (Euler)

See the Simulink documentation for information on these solvers.

When you select Fixed-step is selected as the solver type, you can also set
Fixed step size which determines the step-size the solver uses during the
simulation. By default, Simulink automatically chooses a value for this option.

3

Adaptive Look-Up Tables

Lookup Tables (p. 3-2) A brief description of the lookup table concept

Adaptive Lookup Tables (p. 3-3) More details on adaptive lookup tables

Implementation of Adaptive Lookup
Tables (p. 3-4)

What adaptive lookup tables look like in Simulink

Example: N-D Adaptive Lookup Table
(p. 3-9)

An example using an multidimensional adaptive lookup
table

3 Adaptive Look-Up Tables

3-2

Lookup Tables
Lookup tables are used to store numeric data in a multi-dimensional array
format. In the simpler two-dimensional case, lookup tables can be represented
by matrices. Each element of a matrix is a numerical quantity, which can be
precisely located in terms of two indexing variables. At higher dimensions,
lookup tables can be represented by multidimensional matrices, whose
elements are described in terms of a corresponding number of indexing
variables.

Lookup tables provide a means to capture the dynamic behavior of a physical
(mechanical, electronic, software) system. The behavior of a system with M
inputs and N outputs can be approximately described by using N lookup tables,
each consisting of an array with M dimensions.

Lookup tables are usually generated by experimentally collecting or artificially
creating the input and output data of a system. In general, as many indexing
parameters are required as the number of input variables. Each indexing
parameter may take a value within a pre-determined set of data points, which
are called the breakpoints. The set of all breakpoints corresponding to an
indexing variable is called a grid. So, a system with M inputs is girded by M
sets of breakpoints. Given the input data, the breakpoints are then used to
locate the array elements, where the output data of the system are stored. For
a system with N outputs, N array elements are located and the corresponding
data are stored at these locations.

Once a lookup table is created using the input and output measurements as
described above, the corresponding multi-dimensional array of values can be
used in applications without the need of re-measuring the system outputs. In
fact, only the input data is required to locate the appropriate array elements in
the lookup table and the approximate system output can be read from the data
stored at these locations. Therefore, a lookup table provides a suitable means
of capturing the input-output mapping of a static system in the form of numeric
data stored at pre-determined array locations.

Adaptive Lookup Tables

3-3

Adaptive Lookup Tables
The generation of lookup tables as described above establishes a permanent
and static mapping of input-output behavior of a physical system. Statically
defined lookup tables cannot accommodate the time-varying behavior
(characteristics) of a physical plant. On the other hand, it is well known that
the behavior of actual physical systems often vary with time due to wear,
environmental conditions, and manufacturing tolerances. Under such
variations, the static mapping of input-output behavior of a plant described by
the lookup table may no longer provide a valid representation of the plant
characteristics.

Adaptive lookup tables, on the other hand, incorporate the time-varying
behavior of physical plants into the lookup table generation and maintenance
process while providing all of the functionality of a regular lookup table.

The adaptive lookup table receives the input and output measurements of a
plant's behavior, which are then used to dynamically create and update the
content of the underlying lookup table. In addition to requiring the input data
to create the lookup table, the adaptive lookup table also uses the output data
of the plant to recalculate the table values. As an example, the output data of
the plant can be collected by placing sensors at appropriate locations in a
physical system.

The input measurements are used to locate the array elements by comparing
these input values with the breakpoints defined for each indexing variable.
Next, the output measurements are used to recalculate the numeric value
stored at these array locations. However, unlike a regular table, which only
stores the array data before the actual use of the lookup table, the adaptive
table continuously improves the content of the lookup table. This continuous
improvement of the table data is referred to as the adaptation or learning
process.

The adaptation process involves statistical and signal processing algorithms to
recapture the input-output behavior of the plant. The adaptive lookup table
always tries to provide a valid representation of the plant dynamics even
though the plant behavior may be time varying. The underlying signal
processing algorithms are also robust against reasonable measurement noise
and they provide appropriate filtering of noisy output measurements.

3 Adaptive Look-Up Tables

3-4

Implementation of Adaptive Lookup Tables
The adaptive lookup tables are implemented as Simulink blocks. They create
multi-dimensional lookup tables from measured or simulated data. The inputs
and outputs of a 2-D Adaptive Lookup Table block are shown below.

Adaptive Lookup Table Block Showing Inputs and Outputs]

The following are descriptions of the input and output parameters:

• The inputs X and Zin are the coordinate data and system output
measurements, respectively. For example, if you want to create a lookup
table to model the behavior of an engine’s efficiency as a function of engine
rpm and manifold pressure, X = [rpm, pressure] and Zin = [efficiency].

• The initial table data may be entered either as a dialog parameter (by
double-clicking on the block) or as an input port (i.e., the input port Tin in
the figure). You can start/stop/reset the adaptation through the Enable input
port.

• The outputs of the adaptive lookup table block include the value of the
currently adapted table cell (Zout), the number (Cell No) of that cell (which
may be specified through the block dialog), and if required, the whole
adapted table data (Tout).

Implementation of Adaptive Lookup Tables

3-5

Adaptive Lookup Table Library
There are three adaptive lookup tables available in Simulink Parameter
Estimation.

The three blocks are:

• “Adaptive Look-Up Table (1-D)” on page 5-2 — One dimensional adaptive
lookup

• “Adaptive Look-Up Table (2D)” on page 5-5 — Two-dimensional adaptive
lookup

• “Adaptive Look-Up Table (n-D)” on page 5-8 — Multidimensional adaptive
lookup (use this for dimension 3 or higher)

3 Adaptive Look-Up Tables

3-6

Using Adaptive Lookup Tables in Simulink Models
A typical Simulink diagram using the adaptive table block is shown below.

Simulink Diagram Using an Adaptive Lookup Table

In this figure, the Experimental Data block imports a set of experimental data
into the Simulink environment through MATLAB workspace variables. The
initial table is specified through a constant matrix block. When the simulation
runs, the initial table begins to adapt to new data inputs and the resulting
table is copied to the block’s output.

Real-Time Lookup Tables
You can use experimental data from sensor measurements collected by
running various test on a system in real time. The measured data is then sent
to the adaptive table block in order to generate a lookup table describing the
relation between the system inputs and output.

The adaptive lookup table block may also be used in real-time environment,
where some time-varying properties of a system need to be captured. This can
be done by generating C code using the Real-Time Workshop, which can then

Implementation of Adaptive Lookup Tables

3-7

be run in xPC or dSpace environment. Since the adaptation may be
started/stopped/reset if desired, some logic may be used to adapt the table data
only when it is desired. The cell number output, and the Enable and Lock
inputs facilitate this process. The Enable input is used to start/stop the
adaptation, while the Lock input is used to update only one of the table cells.
The Lock input combined with some logic using the Cell number output provide
the means for updating only the desired table cells during a simulation run.

Setting Adaptive Lookup Table Parameters
Adaptive lookup tables are highly configurable, as shown below.

n-D Adaptive Lookup Table Dialog Box

The number of dimensions for the adaptive
look-up table.

A set of one-dimensional vectors that
contains possible block input values for the
input variables.

Use this port to input table data.

The initial table output values. This (n-D)
array must be of size (n-1)-by-(n-1)... -by-
(n-1), (D times) where D is the number of
dimensions and n is the number of input
breakpoints.

Number values assigned to cells. This
vector must be the same size as the table
data array, and each value must be unique.

Sample mean averages all the values
received within a cell. Sample mean with
forgetting gives more weight to the new
data.

A number between 0 and 1 that regulates
the weight given to new data during the
adaptation.

Checkboxes for customizing the I/O
channels of the block and allowing
adaptation to out-of-range data.

3 Adaptive Look-Up Tables

3-8

For details on how to set these parameters, see the individual reference pages.

Example: N-D Adaptive Lookup Table

3-9

Example: N-D Adaptive Lookup Table
This example shows an N-D Adaptive Lookup table at work and includes many
of the key features associated with adaptive lookup tables. Type

enginetable

at the MATLAB prompt to open this model.

This model has several key features:

• Input —The adaptive lookup table input is the experimental data. It is also
possible to make the original table itself an input.

• An enable feature—You can turn the adaptation on and off during the
estimation to see how the basic features work.

• A lock feature—You can lock the table so that only one cell is adapting. This
is useful if you have one section in your data that is highly erratic or
otherwise difficult for the algorithm to handle.

• Output—Adaptive lookup breakpoints are the output data

3 Adaptive Look-Up Tables

3-10

Running the Example
To start the simulation, pull down the Simulation menu and choose the Start
command or, on Microsoft Windows, click the Start button on the Simulink
toolbar (the start button is a black triangle). The simulation begins by
populating the adaptive lookup table with random data. This figure shows the
input and adaptive data side by side.

Example: N-D Adaptive Lookup Table

3-11

As the simulation progresses, the surface on the right adapts to match the
measured input data. This figure shows the final adaptation.

The fit is quite good. Try using the enable and lock features to see how they
change the adaptation.

3 Adaptive Look-Up Tables

3-12

4
Estimating From the
Command Line

Simulink Parameter Estimation provides an object-oriented command-line API for the estimation
problem.

Introduction (p. 4-2) A brief discussion of the estimation problem in an
object-oriented context

Example: Estimating Parameters and
Initial Conditions of the F14 Model
(p. 4-4)

How to create and simulate an estimation project from
the command line

Creating and Customizing Estimation
Projects (p. 4-12)

Using properties and methods to specify features of the
estimation project

“Creating a Transient Data Object” on
page 4-13

How to instantiate and use transient data objects, which
contain input and output data.

“Creating Parameter Objects” on
page 4-19

How to instantiate and use parameter objects, which
maintain data about parameters you want to estimate.

“Creating State Data Objects” on
page 4-23

How to instantiate and use state data objects, which
contain information about states in your Simulink model.

“Creating Transient Experiment
Objects” on page 4-26

How to instantiate and use transient experiment objects.

4 Estimating From the Command Line

4-2

Introduction
In addition to the Parameter Estimation editor, Simulink Parameter
Estimation provides a collection of functions for performing parameter and
state estimation. These functions perform the same tasks as the editor, but
have the advantages of command-line execution. When you perform a state or
parameter estimation using the Simulink Parameter Estimation GUI,
Simulink Parameter Estimation creates MATLAB objects for all the states and
parameters of your model. If you have a large number of states or parameters,
this can use up large chunks of memory and cause computational delays. Using
the command-line approach, only those states and parameters that you select
are assigned MATLAB objects, which is more efficient.

In addition, the command-line approach is useful for batch jobs, where, for
example, you may want to test out large numbers of models.

Note Simulink Parameter Estimation uses MATLAB objects to perform
estimation tasks. This chapter discusses what you need to know about
object-oriented programming for using Simulink Parameter Estimation, but
see “MATLAB Classes and Objects” for a detailed description of the rules of
object-oriented programming in MATLAB. Also, see *** for a discussion of dot
notation if you are unfamiliar with this feature.

The command-line interface for Simulink Parameter Estimator requires a
Simulink model as a starting point for analysis and estimation. Once you have
selected a candidate model, the estimation process consists of five steps.

• Defining experiments consisting of empirical data sets and the operating
conditions and/or initial conditions of your model

• Selecting the variables and states to be estimated

• Performing the estimation

• Reviewing the results and iterating as necessary

• Validation of estimation results

The following sections discuss these topics:

• “Example: Estimating Parameters and Initial Conditions of the F14 Model”
— How to perform the five steps using command-line functions

Introduction

4-3

• “Creating and Customizing Estimation Projects” — How to use methods and
properties to customize your estimation project’s features

4 Estimating From the Command Line

4-4

Example: Estimating Parameters
and Initial Conditions of the F14 Model

To define an experiment, you must start with a Simulink model. For this
example, type

f14

to load the F14 fighter jet model into the MATLAB workspace. The figure below
shows the f14 model.

F14 Fighter Model

This example outlines the basics of constructing an estimation project using
object oriented code. Only what you need to run the example is presented; see
“Creating and Customizing Estimation Projects” on page 4-12 for details on all
the properties and methods associated with parameter estimation.

Example: Estimating Parameters and Initial Conditions of the F14 Model

4-5

Baseline Simulation
Prior to running an estimation, you will need a baseline for data comparison.
First, you must choose parameters and states’ initial conditions for estimation.
This example uses Ta, the actuator time constant, and Zd and Md, Then use the
code below to run the Simulink F14 model. Note that this is standard Simulink
code and does not involve Simulink Parameter Estimation in any way. See sim
for information about running Simulink models from the MATLAB command
line.

%% Open the model and load experimental data.
open_system('f14')
load f14_estim_data % Load empirical I/O data.

%% Set initialize unknown parameters
% Actuator time constant (ideal: Ta = 0.05)
Ta = 0.5;

% Aircraft dynamic model parameters (ideal: Md = -6.8847,
% Zd = -63.998)
Md = -1; Zd = -80;

%% Plot measured data and simulation results
[T,X,Y] = sim('f14', time, [], [time iodata(:,1)]);
plot(time, iodata(:,2:3), T, Y, '--');
legend('Measured angle of attack', 'Measured pilot g force', ...
 'Simulated angle of attack', 'Simulated pilot g force');

4 Estimating From the Command Line

4-6

This figure appears.

Baseline Comparison of Measured and Simulated F14 I/O Data

As you can see, the measured and simulated data are a poor match. The rest of
this section describes how to estimate values for Ta, Zd, and Md that result in a
better match of data sets.

Creating a Transient Experiment Object
Once you have a model, and have identified the parameters you want to
estimate, the next step is to create the objects required for an estimation.
ParameterEstimator is both the name of the class and the object instantiated
by that class. Classes are created by a constructor; objects are created by
invoking the class name with parameters.

First, create an estimation project object. This is the constructor syntax.

h = ParameterEstimator.TransientExperiment('f14');

MATLAB responds with information about the F14 model.

Example: Estimating Parameters and Initial Conditions of the F14 Model

4-7

Experimental transient data set for the model 'f14':

Output Data
 (1) f14/alpha (rad)
 (2) f14/Nz Pilot (g)

Input Data
 (1) f14/u

Initial States
 (1) f14/Actuator Model
 (2) f14/Aircraft Dynamics Model/Transfer Fcn.1
 (3) f14/Aircraft Dynamics Model/Transfer Fcn.2
 (4) f14/Controller/Alpha-sensor Low-pass Filter
 (5) f14/Controller/Pitch Rate Lead Filter
 (6) f14/Controller/Proportional plus integral compensator
 (7) f14/Controller/Stick Prefilter
 (8) f14/Dryden Wind Gust Models/Q-gust model
 (9) f14/Dryden Wind Gust Models/W-gust model

Creating Parameter Objects for Estimation
To activate parameters for estimation, you must create parameter objects for
the parameters you want to estimate.For this example, use the Ta, the actuator
time constant, and Zd and Md, the vertical velocity and pitch rate gains,

4 Estimating From the Command Line

4-8

respectively. The Zd and Kf gains are located in the f14: Aircraft Dynamics
subsystem.

f14 Aircraft Dynamics Subsystem

First, create ParameterEstimator objects for the parameters you want to
estimate.

%% Create objects to represent parameters.
hPar(1) = ParameterEstimator.Parameter('Ta');
set(hPar(1), 'Minimum', 0.01, 'Maximum', 1, 'Estimated', true)

hPar(2) = ParameterEstimator.Parameter('Md');
set(hPar(2), 'Minimum', -10, 'Maximum', 0, 'Estimated', true)

hPar(3) = ParameterEstimator.Parameter('Zd');
set(hPar(3), 'Minimum', -100, 'Maximum', 0, 'Estimated', true)

%% Create objects to represent estimated initial states.
hIc(1) = ParameterEstimator.State('f14/Actuator Model');

Example: Estimating Parameters and Initial Conditions of the F14 Model

4-9

set(hIc(1), 'Minimum', 0, 'Estimated', false);

You can also use dot notation here. For example, instead of

set(hPar(2), 'Minimum', -10, 'Maximum', 0, 'Estimated', true)

you can write

hPar(2).Estimated='true';
hPar(2).Minimum=-10;
hPar(2).Maximum=0;

Assigning Experimental Data
to Inputs and Outputs of the Model
Once you’ve created a ParameterEstimator object, assign input and output
experimental (i.e., empirical) data.

%% Create objects to represent the experimental data sets.
hExp = ParameterEstimator.TransientExperiment(gcs);
set(hExp.InputData(1), 'Data', iodata(:,1), 'Time', time);

set(hExp.OutputData(1), 'Data', iodata(:,2), 'Time', time,
'Weight', 5);
set(hExp.OutputData(2), 'Data', iodata(:,3), 'Time', time);

Creating an Estimation Object
and Running the Estimation
Finally, create an estimation object and run the estimation, using gcs to get the
full path name to the Simulink model.

hEst = ParameterEstimator.Estimation(gcs, hPar, hExp);
hEst.States = hIc;

%% Setup estimation options
hEst.OptimOptions.Algorithm = 'lsqnonlin';
hEst.OptimOptions.GradientType = 'refined';
hEst.OptimOptions.Display = 'iter';

%% Run the estimation
estimate(hEst);

4 Estimating From the Command Line

4-10

%% Plot measured data and final simulation results
[T,X,Y] = sim('f14', time, [], [time iodata(:,1)]);
figure
plot(time, iodata(:,2:3), T, Y, '--');
legend('Measured angle of attack', 'Measured pilot g force', ...
 'Simulated angle of attack', 'Simulated pilot g force');

This figure shows the results of the estimation.

The measured and simulated outputs now appear to be a close match. Next,
look at the estimated values to see how they compare with the default values
of the F14 model.

%% Look at the estimated values
find(hEst.Parameters, 'Estimated', true)

Example: Estimating Parameters and Initial Conditions of the F14 Model

4-11

MATLAB responds with

1) Parameter data for 'Ta':

 Parameter value : 0.05
 Initial guess : 0.5

 Estimated : true

 Referenced by:

(2) Parameter data for 'Md':

 Parameter value : -6.884
 Initial guess : -1

 Estimated : true

 Referenced by:

(3) Parameter data for 'Zd':

 Parameter value : -63.99
 Initial guess : -80

 Estimated : true

 Referenced by:

You can verify that these values match the default values of the f14 model by
clearing your workspace, loading the model, and checking the values.

clear all
f14
whos

4 Estimating From the Command Line

4-12

Creating and Customizing Estimation Projects
The following sections describe in more detail how to create and modify
transient data and estimation objects.

First, a quick look at terminology:

• Objects are instantiations of classes.

• Classes contain, or rather, define, properties and methods.

• You use a constructor to create an instance of an object, and use the set
method or dot notation to modify the properties of your objects.

Creating a Transient Data Object

4-13

Creating a Transient Data Object
Estimating parameters requires a transient data object, which you create
using a constructor. The syntax to create a transient data object is

h = ParameterEstimator.TransientData(block); % I/O port block
h = ParameterEstimator.TransientData(block , portnumber); %
Internal block
h = ParameterEstimator.TransientData(block , data, time);
h = ParameterEstimator.TransientData(block , data, Ts);
h = ParameterEstimator.TransientData(block , portnumber, data,
time);
h = ParameterEstimator.TransientData(block , portnumber, data,
Ts);
h = ParameterEstimator.TransientData(block , ..., Property ,
Value, ...)o.

Properties of Transient Data Objects
This table lists the properties of the transient data object and the associated
input parameters.

Transient Data Object Properties

Property Description

Block Name of the Simulink block with which the Data is
associated. Must be a string.

PortType The type of the signal that this object represents is deter-
mined in the constructor from the Block property, which
may be Inport, Outport, or Signal.

PortNumber For data associated with the outputs of regular blocks or
subsystems, this property specifies the output port number

of interest. The default value is one.

4 Estimating From the Command Line

4-14

Dimensions Dimensions of the data required for this data set. It is
computed from the CompiledPortDimensions property
of the appropriate port of the Block, and it defines the
size of other properties. Currently, Simulink supports
scalar, vector, or matrix signals, so Dimensions is either
a scalar or a 1-by-2 array.

Data Actual experimental data. Its size must be consistent
with the Dimensions property. To conform with
Simulink conventions, the data is stored in the following
formats:

• Scalar or vector-valued data. The Data is of the
form Ns m, where Ns is the number of data
samples, and m is the number of channels in the
signal.

• Multi-dimensional data (matrix and higher
dimensions). The Data is of the form m1 . . . mn
Ns, where Ns is the number of data samples, and
mi is the number of channels in the ith dimension
of the signal.

• For missing or unspecified data NaNs are used.

Ts
Tstart
Tstop

For uniformly-sampled data, Ts is the sample time and
Tstart is the start time of the signal. The stop time
Tstop and the time vector Time are given by

Tstop = Tstart + Ts * (Ns -1)

Time = Tstart : Ts : Tstop

For nonuniform time data Ts is set to NaN, and the start

and stop times are calculated from the time vector.

Transient Data Object Properties (Continued)

Property Description

Creating a Transient Data Object

4-15

Time The time data in column vector format. The length of
Time must be consistent with the number of
samples in Data.

• For a non-uniformly spaced Time vector, its length
should match the length of Data.

• Otherwise, Time is automatically adjusted based
on the length of Data.

Modifying Ts will reset Time internally. In this case,
Time is a virtual property whose value is computed from
Ts and Tstart when you request it. The rules for setting
time related properties are

• Modifying Time will set

Ts = NaN
Tstart = Time(1)

If the time vector is uniformly spaced, a sample
time Ts is calculated.

• Modifying Tstart translates Time forward or
backward.

• Modifying Ts sets Time = [] internally and generates
it when required by the simulation.

Weight The weight associated with each channel of this data
set. It is used to specify the relative importance of
signals. The default value is 1.

InterSample Interpolation method between samples can be zero-order

hold (zoh) or first-order hold (foh). This property
is used for data preprocessing.

Transient Data Object Properties (Continued)

Property Description

4 Estimating From the Command Line

4-16

Modifying Transient Data Object Properties
Once a transient data object is created, you can modify its properties using this
syntax.

in1.Data = rand(2,1,10); % 10 data values each of size [2 1]
in1.Time = 1:10; % Automatically converted to column vector

Some properties (e.g., Weight) support scalar expansion with respect to the
value of Dimensions property.

Example: Assigning Input Port Data
To assign data to an Input port with 23 port dimensions, use

in1 = ParameterEstimator.TransientData(gcb, rand(2,3,100), 0.05)

MATLAB responds with

(1) Transient data for Inport block 'portdata_test_noSim/By//Pass
Air Valve Voltage':
Sampling interval: 0.05 sec.
Data set has 100 samples and 6 channels.

Using Class Methods
The description of some of the important methods is given below.

• select—Used to extract a portion of data. The result is returned in a new
transient data object.
in2 = select(in1, Sample , 10:100); % 91 samples

in3 = select(in1, Range , [1 4]); % Samples for 1<t<4
% ... or an alternative

in3 = select(in1, Sample , find(in1.Time > 1 & in1.Time < 4));

To extract data from a subset of available channels, use
in4 = select(in1, Channel , [1 3 2]);
% channels 1,3,and 2 in this order

• hiliteBlock—Highlights the block associated with this object in the
Simulink diagram.

Creating a Transient Data Object

4-17

• update—Updates the object after the Simulink model has been modi.ed in
some way. If the Dimensions property value changes then the other
properties are reset to their default values.

Helper Functions: Seven Ways to Represent
Sampling Instants
Time is represented in @TransientData objects ins seven different ways.
An efficient storage method is required for uniformly spaced data (e.g.,
using sampling and start times only) as well as the ability to store a
non-uniform time vector.

Only Time, Ts, and Tstart are writable time properties. However, there
are other ways of specifying time data. Given a data array of length n
and a combination of at most two of the following parameters

• Sampling time, Ts

• Start time, ti

• Final time, tf
• Time vector, (t0, t1, . . . , tn-1)

you can calculate the corresponding Time vector of length n. The
combinations are

1 Given Ts t = {kTs, k = 0, . . . , n . 1}

2 Given Ts, ti t = {ti + kTs, k = 0, . . . , n . 1}

3 Given Ts, tf t = {tf . (n . 1 . k)Ts, k = 0, . . . , n . 1}

4 Given ti, tf t = {ti + kTs, k = 0, . . . , n . 1, Ts = tf-tin-1 }

5 Given tf t = {kTs, k = 0, . . . , n . 1, Ts = tfn-1}

6 Given (t0, t1, . . . , tn-1) t = {tk, k = 0, . . . , n . 1}

7 Given ti, (t0 = 0, t1, . . . , tn-1) t = {ti + tk, k = 0, . . . , n . 1}.

4 Estimating From the Command Line

4-18

Method for Logging Internal Block Signals.
When a data object represents an internal block signal, signal logging is used
to access the output signal of that block. The following piece of code, which is
mainly implemented in estimation methods, illustrates this process.

% Create data object
sig1 = ParameterEstimator.TransientData(gcb, 2);
% ...
% Configure port for signal logging before simulation
% Output port handle
h = get_param(sig1.Block, 'Object');
hPort = handle(h.PortHandles.Outport(sig1.PortNumber));
% Signal name
Name = [sig1.Block '/' int2str(sig1.PortNumber)];
Name = regexprep(Name, '\n|\n\r', ' ');
Name = regexprep(Name, ' ', '_');
Name = regexprep(Name, '/', '_')
% Configure signal logging properties
hPort.Name = 'SPE_signal'; % Doesn t need to be unique
hPort.TestPoint = 'on';
hPort.DataLogging = 'on';
hPort.DataLoggingName = Name; % Should be unique
hPort.DataLoggingNameMode = 'Custom';
% ...
% Extract signal data after simulation
% Signal logging name
LoggingName = get_param(gcs, 'SignalLoggingName');
hLog = evalin('base', LoggingName);
sig1_data = hLog.extract(Name);

Creating Parameter Objects

4-19

Creating Parameter Objects
The @Parameter object refers to the parameters of the Simulink model marked
for estimation. Some of the Simulink model parameters are to be estimated and
storage is required for the initial values, current values, ranges, etc. One
@Parameter object corresponds to each parameter in the Simulink model to be
potentially estimated. These objects represent estimation parameters of any
type such as scalars, vectors, and multi-dimensional arrays.

Constructor
The syntax to create a parameter object is

h = ParameterEstimator.Parameter('Name');
h = ParameterEstimator.Parameter('Name', Value);
h = ParameterEstimator.Parameter('Name', Value, Minimum,
Maximum);
h = ParameterEstimator.Parameter('Name', ..., 'Property', Value,
...);

In the first case, Name is a workspace variable. In the other cases, Name
does not need to exist in the workspace at the time of object creation.
However, it is required at estimation time.

Properties of Parameter Objects
The description of some of the important properties of parameter objects is given
in the table below.

Table 4-1: Parameter Object Properties

Property Description

Name Parameter name. The parameter can be a
multi-dimensional array of any size.

Dimensions Dimensions of the value of the parameter. This is the
de.ning property for the size of other properties.

Value The current or estimated value of the parameter. This is
the defining property for size checking and scalar
expansions.

4 Estimating From the Command Line

4-20

Estimated A boolean array of the same size as that of Value.
Depending on the value of the elements of the
Estimated property, the behavior of the corresponding
elements of Value are as follows:

• The elements of Value is estimated if the
corresponding elements in Estimate are set to
true. The result is stored in the Value property.

• The elements of Value are not estimated if the
corresponding elements in Estimated are set to false.
However, these elements are used to reset the
corresponding workspace parameter during
estimations.

This property is set to false by default, meaning that the
parameter value is not estimated.

 InitialGuess Separate properties are required to hold the initial and
current values of the parameters. So, when the
InitialGuess property is initialized with a value, both
it and the Value property are assigned the same value.

Depending on the value of the elements of the
Estimated property, the behavior of the corresponding
elements of InitialGuess are as follows:

• If any element in Estimated is set to true, then the
corresponding element of InitialGuess is used to
initialize the workspace parameter during
estimations.

• If any element in Estimated is set to false, then the
corresponding element of InitialGuess will not be
used in any way.

Table 4-1: Parameter Object Properties (Continued)

Property Description

Creating Parameter Objects

4-21

Example: F14 Model
To create a parameter object for the parameter Ta in the f14 model, use

par1 = ParameterEstimator.Parameter('Ta')
(1) Parameter data for 'Ta':
Parameter value : 0.05
Initial value : 0.05
Estimated : false
Referenced by the blocks:
f14/Actuator Model

Example: Gain Matrix
To create a parameter object for a matrix parameter K of size 4-by-1, use

par1 = ParameterEstimator.Parameter('K', [1 2 3 4]')
(1) Parameter data for 'K':
Parameter value : [1;2;3;4]
Initial value : [1;2;3;4]
Estimated elements : [false;false;false;false]
Referenced by the blocks:

Modifying Properties
Once a parameter object is created, its properties can be modi.ed using
the following syntax:

par1.Estimated = true; % Estimate this parameter

Most of the properties, for example, Estimated and TypicalValue support
scalar expansion with respect to the size of Value.

Minimum,
Maximum

Parameter range

TypicalValue The typical values of the parameters. This property is
used in estimations for scaling purposes. The default
value is one

Table 4-1: Parameter Object Properties (Continued)

Property Description

4 Estimating From the Command Line

4-22

Using Class Methods
The description of some of the important methods is given below:

• hiliteBlock—Highlights the referenced blocks associated with parameter
objects in the Simulink diagram.

• update—Updates the parameter object after the Simulink model has been
modified in some way. If the size of Value property changes, then the other
properties are reset to their default values

Creating State Data Objects

4-23

Creating State Data Objects
This object defines the states of a dynamic Simulink block. It is used in a
transient estimation context to define known initial conditions of a block
diagram model, and in a steady-state estimation context to define the known
states of the model.

For example, the Simulink model of a simple mass-spring-damper system has
two integrator blocks to generate velocity and position signals from
acceleration and velocity values, respectively, during simulation. If the
corresponding physical system is known to be at rest at the beginning of an
experiment, the initial states (velocity and position) of these integrators are
zero. So, two @StateData objects can be created to describe these known initial
conditions.

This is the syntax for creating this object.

h = ParameterEstimator.StateData('block');
h = ParameterEstimator.StateData('block', data);
h = ...
ParameterEstimator.StateData('block', ...,
'Property',Value, ...);

In the first constructor, the state vector is initialized from the model containing the
block.

Properties of the State Data Object
The description of some of the important properties is given in the table below.

Table 4-2: Properties of the State Data Object

Property Description

Block Name of the Simulink block whose states are defined by
this object

Dimensions Scalar value to store the number of states of the
relevant block

4 Estimating From the Command Line

4-24

Example: Initial Condition Data
To create an empty initial condition object for the
engine_idle_speed/TransferFcn2, use

st1 = ParameterEstimator.StateData ...
('engine_idle_speed/Transfer Fcn2', [1 2])

Data Column vector to store the initial value of the state for
the block speci.ed by this object. The length of this
vector should be consistent with the Dimensions
property. Since the underlying Simulink model also
stores an initial state vector for all dynamic blocks, the
following conventions are used to resolve the initial
state values during estimations:

• If Data is not empty, use it when forming the
state vector.

• If Data is empty, get the state vector for this block
from the model. This behavior is useful when using
helper methods to create an experiment object that
instantiates empty state data objects for all dynamic
blocks in the Simulink model.

• If there is no state data object for a dynamic block in
the model, get the state vector of that block from the
model. This behavior is useful for command-line
users, when there are too many states in the model
and only a few of them have to be set to a different
initial values.

Ts Sampling time of discrete blocks. Set to zero for
continuos blocks. This property is read-only and is
currently used for information only.

BlockInfo Structure to hold data about SimMechanics or
SimPower Systems blocks with states

Table 4-2: Properties of the State Data Object (Continued)

Property Description

Creating State Data Objects

4-25

(1) State data for f14/Dryden Wind Gust Models/W-gust model
block:
The block has 2 continuous state(s).
State value : [1;2]

Modifying Properties
Once a state data object is created, its properties can be modi.ed using the
following syntax.

st1.Data = [2 3]; % State vector of size 2

Some properties (e.g., Data) support scalar expansion with respect to the value
of Dimensions property.

Using Class Methods
The description of some of the important methods is given below.

• hiliteBlock—Highlights the block associated with this object in the
Simulink diagram

• update—Updates the object after the Simulink model has been modi.ed in
some way. If the Dimensions property value changes, the other properties
are reset to their default values.

4 Estimating From the Command Line

4-26

Creating Transient Experiment Objects
The @TransientExperiment object encapsulates data measured at the input
and output ports of a system during a single experiment, as well as the system’s
known initial states.

The syntax to create a transient experiment object is

h = ParameterEstimator.TransientExperiment('model');

h = ...
ParameterEstimator.TransientExperiment('model', hIn, hOut, hIc);

h = ...
ParameterEstimator.TransientExperiment('model', ...
{'in1', ...}, {'out1', ...}, {'ic1', ...});

h = ParameterEstimator.TransientExperiment('model', ...,
'Property', Value, ...);

The second constructor is used when data objects are available. The third is
used when the names of blocks to work with are known. An empty argument in
these constructors ({} or []) means the default behavior, which is to use no
I/O ports or states depending on the position of the empty argument.

Creating Transient Experiment Objects

4-27

Properties of Transient Experiment Objects
The description of some of the important properties is given in the table below.

Example: Creating an f14 Experiment
To create an empty transient experiment for the f14 model, use

exp1 = ParameterEstimator.TransientExperiment('f14)
Experimental (Transient) data set for the model f14 :
Outputs
(1) f14/alpha (rad)
(2) f14/Nz Pilot (g)
Inputs
(1) f14/u
Initial States
(1) f14/Actuator Model
(2) f14/Aircraft Dynamics Model/Transfer Fcn.1
(3) f14/Aircraft Dynamics Model/Transfer Fcn.2

Table 4-3: Properties of Transient Experiment Objects

Property Description

Model Simulink model with which this experiment is
associated

InputData,
OutputData

Transient data objects associated with appropriate i/0
blocks in the Model. Blocks with unassigned objects or
objects with no data will not be used in estimations,
meaning:

• For input ports: assign zeros to these ports/channels
during simulation.

• For output ports: don’t use these ports/channels in
the cost function.

InitialStates State data objects associated with appropriate
dynamic blocks in the Model.

InitFcn Function to be executed to configure the model for
this particular experiment

4 Estimating From the Command Line

4-28

(4) f14/Controller/Alpha-sensor Low-pass Filter
(5) f14/Controller/Pitch Rate Lead Filter
(6) f14/Controller/Proportional plus integral compensator
(7) f14/Controller/Stick Prefilter
(8) f14/Dryden Wind Gust Models/Q-gust model
(9) f14/Dryden Wind Gust Models/W-gust model

Example: Creating f14 Experiment Using Block
Names
To create an empty transient experiment where data is available only for the
first output and the Actuator Model block, use

exp1 = ParameterEstimator.Experiment('f14', {}, ...
{'f14/alpha (rad)'},
{'f14/Actuator Model'})
Experimental (Transient) data set for the model 'f14':
Outputs
(1) f14/alpha (rad)
Inputs(none)
Initial States
(1) f14/Actuator Model

Example: Creating Van der Pohl Experiment From
User Objects
To create a transient experiment from user objects for I/Os and states, use

out1 = ParameterEstimator.TransientData('vdp/Out1');
ic1 = ParameterEstimator.StateData('vdp/x1');
exp1 = ParameterEstimator.TransientExperiment...
(gcs, [], out1, ic1);
Experimental (Transient) data set for the model 'vdp':
Outputs
(1) vdp/Out1
Inputs
(none)
Initial States
(1) vdp/x1

Creating Transient Experiment Objects

4-29

Modifying Properties
The objects referred in InputData, OutputData, and InitialStates
properties can be modified or removed as necessary.

Using Class Methods
The description of one important method is given below:

• update: Updates the object after the Simulink model has been modi.ed in
some way. The object listed in InputData, OutputData, InitialStates
properties are updated in turn.

4 Estimating From the Command Line

4-30

5

Block Reference

Simulink Parameter Estimation includes three blocks that instantiate adaptive lookup tables in
Simulink models.

• Adaptive Look-Up Table (1-D) on page 5-2

• Adaptive Look-Up Table (2D) on page 5-5

• Adaptive Look-Up Table (n-D) on page 5-8

Adaptive Look-Up Table (1-D)

5-2

5Adaptive Look-Up Table (1-D)Purpose Perform a one-dimensional adaptive table lookup

Description The Adaptive Look-Up Table (1-D) block creates a one-dimensional adaptive
lookup table by dynamically updating the underlying lookup table. The block
uses the outputs, ydata, of your system to do the adaptations.

Each indexing parameter U may take a value within a set of adapting data
points, which are called breakpoints. Two breakpoints in each dimension define
a cell. The set of all breakpoints in one of the dimensions defines a grid. In the
one-dimensional case, each cell has two breakpoints, and the cell is a line
segment.

You can use the Adaptive Look-Up Table (1-D) to model time-varying systems.

Data Type
Support

Doubles only

Adaptive Look-Up Table (1-D)

5-3

Dialog Box

First input (row) breakpoint set
The vector of values containing possible block input values. The input
vector must be monotonically increasing.

Make initial table an input
Selecting this box forces the Adaptive Look-Up Table (1-D) block to ignore
the Table data (initial) parameter. Instead, a new port appears with Tin
next to it. Use this port to input table data.

Table data (initial)
The initial table output values. This vector must be of size N-1, where N is
the number of breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the
table data vector, and each value must be unique.

Adaptive Look-Up Table (1-D)

5-4

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean
averages all the values received within a cell. Sample mean with forgetting
gives more weight to the new data. How much weight is determined by the
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data
during the adaptation. 0 means short memory (last data becomes the table
value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive look-up
table. 0 = disable; 1 = enable; 2 = reset to initial table data.

Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a
simulation run. 0 = unlock; 1 = lock current cell.

Adapt to out-of-range data
Extrapolate beyond the extreme breakpoints.

Adaptive Look-Up Table (2D)

5-5

5Adaptive Look-Up Table (2D)Purpose Perform two-dimensional adaptive table lookup

Description The Adaptive Look-Up Table (2-D) block creates a two-dimensional adaptive
lookup table by dynamically updating the underlying look-up table. The block
uses the outputs (ydata) of your system to do the adaptations.

Each indexing parameter U may take a value within a set of adapting data
points, which are called breakpoints. wo breakpoints in each dimension define
a cell. The set of all breakpoints in one of the dimensions defines a grid. In the
two-dimensional case, each cell has four breakpoints and is a flat surface.

You can use the Adaptive Look-Up Table (2-D) to model time-varying systems.

Dialog Box

First input (row) breakpoint set
The vector of values containing possible block input values for the first
input variable. The first input vector must be monotonically increasing.

Adaptive Look-Up Table (2D)

5-6

Second input (column) breakpoint set
The vector of values containing possible block input values for the second
input variable. The second input vector must be monotonically increasing.

Make initial table an input
Selecting this box forces the Adaptive Look-Up Table (2-D) block to ignore
the Table data (initial) parameter. Instead, a new port appears with Tin
next to it. Use this port to input table data.

Table data (initial)
The initial table output values. This 2-by-2 matrix must be of size
(n-1)-by-(m-1), where n is the number of first input breakpoints and m is
the number of second input breakpoints.

Table numbering data
Number values assigned to cells. This matrix must be the same size as the
table data matrix, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean
averages all the values received within a cell. Sample mean with forgetting
gives more weight to the new data. How much weight is determined by the
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data
during the adaptation. 0 means short memory (last data becomes the table
value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive look-up
table.

Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a
simulation run.

Adaptive Look-Up Table (2D)

5-7

Adapt to out-of-range data
Extrapolate beyond the extreme breakpoints.

Adaptive Look-Up Table (n-D)

5-8

5Adaptive Look-Up Table (n-D)Purpose Create an adaptive lookup table of arbitrary dimension

Description The Adaptive Look-Up Table (n-D) block creates an adaptive lookup table of
arbitrary dimension by dynamically updating the underlying lookup table. The
block uses the outputs of your system to do the adaptations.

Each indexing parameter may take a value within a set of adapting data
points, which are called breakpoints. Breakpoints in each dimension define a
cell. The set of all breakpoints in one of the dimensions defines a grid. In the
n-dimensional case, each cell has two n breakpoints and is an (n-1)
hypersurface.

You can use the Adaptive Look-Up Table (n-D) to model time-varying systems.

Dialog Box

Number of table dimensions
The number of dimensions for the adaptive look-up table.

Adaptive Look-Up Table (n-D)

5-9

Table breakpoints
A set of one-dimensional vectors that contains possible block input values
for the input variables. Each input row must be monotonically increasing,
but the rows do not have to be the same length. For example, if the Number
of dimensions is 3, you can set the table breakpoints as follows:

{[1 2 3], [5 7], [1 3 5 7]}

Make initial table an input
Selecting this box forces the Adaptive Look-Up Table (n-D) block to ignore
the Table data (initial) parameter. Instead, a new port appears with Tin
next to it. Use this port to input table data. Because of Simulink’s current
limitations,

Table data (initial)
The initial table output values. This (n-D) array must be of size
(n-1)-by-(n-1) ... -by- (n-1), (D times) where D is the number of dimensions
and n is the number of input breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the
table data array, and each value must be unique.

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean
averages all the values received within a cell. Sample mean with forgetting
gives more weight to the new data. How much weight is determined by the
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data
during the adaptation. 0 means short memory (last data becomes the table
value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive look-up
table.

Adaptive Look-Up Table (n-D)

5-10

Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a
simulation run.

Index-1

Index

A
acker 5-8

	Introduction
	What Is the Parameter Estimation Blockset
	Installation
	Demos

	Getting Started
	Introduction
	Setting Up the Estimation Problem
	Importing Transient Data
	Specifying Operating Conditions
	Selecting Parameters for Estimation

	Selecting Views for Plotting
	Running an Estimation
	Adding Data Sets
	Specifying and Setting Up Parameters
	Opening the Estimation Window
	Running the Estimation

	Setting Options for Optimization
	Selecting Optimization Methods
	Selecting Optimization Termination Options
	Selecting Additional Optimization Options
	Specifying the Cost Function

	Setting Options for the Simulation
	Selecting Solvers

	Adaptive Look-Up Tables
	Lookup Tables
	Adaptive Lookup Tables
	Implementation of Adaptive Lookup Tables
	Adaptive Lookup Table Library
	Using Adaptive Lookup Tables in Simulink Models
	Real-Time Lookup Tables
	Setting Adaptive Lookup Table Parameters

	Example: N-D Adaptive Lookup Table
	Running the Example

	Estimating From the Command Line
	Introduction
	Example: Estimating Parameters and Initial Conditions of the F14 Model
	Baseline Simulation
	Creating a Transient Experiment Object
	Creating Parameter Objects for Estimation
	Assigning Experimental Data to Inputs and Outputs of the Model
	Creating an Estimation Object and Running the Estimation

	Creating and Customizing Estimation Projects
	Creating a Transient Data Object
	Properties of Transient Data Objects
	Modifying Transient Data Object Properties
	Using Class Methods
	Helper Functions: Seven Ways to Represent Sampling Instants
	Method for Logging Internal Block Signals.

	Creating Parameter Objects
	Constructor
	Properties of Parameter Objects
	Example: F14 Model
	Example: Gain Matrix
	Modifying Properties
	Using Class Methods

	Creating State Data Objects
	Properties of the State Data Object
	Example: Initial Condition Data
	Modifying Properties
	Using Class Methods

	Creating Transient Experiment Objects
	Properties of Transient Experiment Objects
	Example: Creating an f14 Experiment
	Example: Creating f14 Experiment Using Block Names
	Example: Creating Van der Pohl Experiment From User Objects
	Modifying Properties
	Using Class Methods

	Block Reference
	Index

