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What Is the Parameter Estimation Blockset
The Parameter Estimation Blockset (PEB) is a Simulink® based product for 
estimating/calibrating model parameters from experimental data. This 
product supports

• DC Estimation—Tune DC parameters (e.g., resistance in RLC circuit) to best 
match the steady-state values observed at different operating points. 
Transients are ignored and trimming is used to obtain steady-state values 
from the Simulink model.

• Transient Estimation—Estimate parameters by comparing model output 
history and experimental data for a given input.

• Adaptive Look-Up Tables—Estimate the table values at the prescribed 
breakpoints using measurements from the physical system.

The Parameter Estimation Blockset provides graphical user interfaces (GUIs) 
to do the following:

• Set up the problem

• Specify which model parameters to estimate

• Import and preprocess the experimental data

• Follow the estimation progress

• Validate the estimation results through various plots
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Installation
Instructions for installing the Parameter Estimation Blockset can be found in 
the MATLAB® Installation documentation for your platform. We recommend 
that you store the files from this toolbox in a subdirectory named paramest 
under the main matlab directory. To determine if the Parameter Estimation 
Blockset is already installed on your system, check for a subdirectory named 
paramest within the main blockset directory or folder.
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Demos
The Parameter Estimation Blockset provides demonstration files that show 
you how to use the blockset to perform control design tasks in various settings. 
To run these demos, type

demo

at the MATLAB prompt. This opens the Demos pane in the Help browser. 
Select Blocksets and then Parameter Estimation to see a list of available 
demos. Alternatively, if you have the Help browser open, you can select the 
Demos pane directly and follow the same procedure. 
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Introduction
Simulink Parameter Estimation compares empirical data with data generated 
by a Simulink model. Using optimization techniques, it estimates states and/or 
parameters so that a user-defined cost function, typically involving the 
mean-square error between the two data signals, is minimized. 

Note  It is not necessary that you have a strong background in optimization 
theory or practice, but as you gain insight into the use of Simulink Parameter 
Estimation, you may find it helpful to consult the Optimization Toolbox User’s 
Guide for more details about optimization algorithms.
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Setting Up the Estimation Problem
Before beginning the estimation process, you must set up the problem so that 
the appropriate parameters, solvers, cost functions, etc., are in place. Simulink 
Parameter Estimation provides a GUI that makes this setup process quick and 
easy. This section describes how to use this GUI to do a complete setup.

To show the steps of the setup, open a nonlinear model of an automotive 
engine’s idle speed by typing

engine_idle_speed

at the MATLAB prompt. This model opens.
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To open the Control and Estimation Tools Manager, select Parameter 
Estimation from the engine idle speed model’s Tools menu.

Control and Estimation Tools Manager

You can use the Simulink Control and Estimation Tools Manager to specify:

• Parameters to be estimated

• Cost functions

• Experimental data to be matched by your Simulink model

• Initial operating conditions (initial conditions) of your model
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Importing Transient Data
To import measured (empirical) data, select Transient Data under the 
Estimation Task folder in the Control and Estimation Tools Manager. 
Right-click on Transient Data and select Add to create a new data set. The 
engine speed model has measured data included with it in an array called 
iodata. Click Edit in the Transient Data Sets panel to open a data panel in the 
tools manager.

Data Importing in the Simulink Control and Estimation Tools Manager

The iodata array contains 2 columns, the first for input data and the second 
for output data. Time is stored in a separate array called time. Starting with 
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the Input Data tab, double-click on the Data cell and click Import. This opens 
the Data Import window.

Use the Data Import Window to Select Your Data

To import input data, select iodata from the list of variable names, then enter 
1 in the Assign columns field. Then click Import. 

To import the time vector, follow the same procedure using the Time/Ts cell. 
To import the output data, select the Output Data tab and enter the data in 
the Output Data cell. Use the second column of the iodata array; that is, 
specify 2 is the Assign columns field.

Specifying Operating Conditions
To see the default operating points, both initial states and inputs, select 
Default Operating Points from the Operating Points folder in the left panel of 

By default, the Data Import window looks at all files and 
variables in the MATLAB workspace. You can specify 
searches for MAT-files, Micorsoft Excel (XLS) files, CSV files, 
or ASCII flat files.

List of available data.

In the case of multi-column data, select the column(s) you 
want to import.

If your array is transposed, that is, if the data is organized 
in rows instead of columns, specify row numbers here.
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the Simulink Control and Estimation Tools Manager. All default values are 
changeable, but for this example, use the default values.

Specify New Initial Conditions on the Operating Points Page

If you want to import new initial conditions from your Simulink model, click 
Sync with model.
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Selecting Parameters for Estimation
To select parameters for estimation, select the Variables node. When the 
Global Parameters page opens, click Add to open the Select Parameters 
window.

Select Parameters Window

For this example, select the last four: gain1, gain2, gain3, and mean_speed. In 
general estimations you can, of course, select fewer or more variables. Often, it 
is more practical to estimate a small group of parameters and use the final 
estimated values as a starting point for further estimation of other, trickier 
parameters. Making these sorts of choices involves experience, intuition, and a 
solid understanding of your Simulink model’s strengths and limitations.

By default, Select Parameters window looks at all 
variables in the MATLAB workspace.

List of available data.

Use your mouse to select data. Hold Shift down to 
select adjacent parameters. Hold Ctrl down to select 
non-adjacent parameters.



Selecting Views for Plotting

2-9

Selecting Views for Plotting
You can watch the minimization process occur by right-clicking on Views and 
selecting Add. In the views window that opens, click Edit to open the View 
Setup tab.

Check Plot in the Options panel, and then click Show Plots. This opens a plot 
window for the cost function. When you run your estimation, the plot updates 
automatically.
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Running an Estimation
You are now ready to set up and run an estimation. 

Adding Data Sets
Select Estimation from the directory tree and then right-click Add.

Select New Data to add your engine data to the estimation.
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Specifying and Setting Up Parameters
You can use the Parameters window to select which parameters to estimate 
and the range of values for the estimation. 

Select the parameters you want to estimate in the Estimate column. Enter 
initial values for your estimation parameters in the Initial Guess column. The 
default values in the Minimum and Maximum columns are -Inf and Inf, 
respectively, but you can select any range you want. If you have good reason to 
believe a parameter lies within a finite range, it is usually best not to use the 
default minimum and maximum values. Often there is computational 
advantage in specifying finite bounds if you can.

For this example, set gain1 to 10, gain2 to 100, gain3 to 50, and mean_speed 
to 500. Or, use any initial values you like.
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Opening the Estimation Window
Select the Estimation tab to open the Estimation window.

Before you start, you can select optimization settings to specify various 
algorithm features. See “Selecting Optimization Methods” on page 2-17 for 
more information.
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Display Options
Clicking Display Options opens this window.

By default, all boxes are checked. Uncheck any 
feature that you don’t want to view during the 
estimation process.
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Running the Estimation
Click Start to begin the estimation. At the end of the iterations, the window 
should look something like this.
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The Estimation page displays each iteration of the optimization algorithm. To 
see the final values for the parameters, go to the Parameters page.

The final values are

• gain1 = 124.44
• gain2 = 24.591
• gain3 = 20.442
• mean_speed = 730.37
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The cost function minimization is plotted below.

If the optimization went well, you should see your cost function converge on a 
minimum value.



Setting Options for Optimization

2-17

Setting Options for Optimization
There are several options that can be set to tune the results of the optimization, 
including the optimization algorithm and the tolerances the algorithms use. To 
set options for optimization select Optimization -> Optimization Options in 
the Signal Constraint window.

Selecting Optimization Methods
Both the algorithm and model size define the optimization method. For the 
Algorithm parameter, the two options are Function Minimization and 
Simplex Search. Function Minimization uses the Optimization Toolbox 
function fmincon to optimize the response signal subject to the constraints. 
Simplex Search uses the Optimization Toolbox function fminsearch, a direct 
search method, to optimize the response. Simplex Search is most useful for 
simple problems and is sometimes faster than Function Minimization for 
models that contain discontinuities. By default, the Model Size parameter is 
set to Medium Scale. When the model is very large and Function Minimization 
is selected as the optimization algorithm, Model Size can be changed to Large 
Scale to increase computation speed. See the Optimization Toolbox 
documentation for more information about the optimization methods.
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Selecting Optimization Termination Options
There are also several options that define when the optimization will 
terminate:

• Parameter tolerance—Optimization will terminate when successive 
parameter values change by less than this number.

• Constraint tolerance—This number represents the maximum amount by 
which the constraints can be violated and still allow a successful 
convergence.

• Function tolerance—The optimization will terminate when successive 
function values are less than this value. Changing the default Function 
tolerance value is only useful when you are tracking a reference signal or 
using the Simplex Search algorithm.

• Maximum iterations—The maximum number of iterations allowed. The 
optimization will terminate when the number of iterations exceeds this 
number.

By varying these parameters you can force the optimization to continue 
searching for a solution or to continue searching for a more accurate solution.

Selecting Additional Optimization Options
Additional options for optimization include

• Display level—This option specifies the form of the output that appears in 
the Optimization Progress window. The options are Iter which displays 
information after each iteration, Off which turns off all output, Notify 
which displays output only if the function does not converge, and Final 
which only displays the final output. Refer to the Optimization Toolbox 
documentation for more information on what type of iterative output each 
algorithm displays.

• Restarts—In some optimizations the Hessian may become ill-conditioned 
and the optimization does not converge. In these cases it is sometimes useful 
to restart the optimization after it stops, using the end-point of the previous 
optimization as the starting point for the next one. To automatically restart 
the optimization, indicate the number of times you want to restart in this 
field.
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• Gradient Type—When using Function Minimization as the Algorithm, 
Simulink Response Optimization calculates gradients based on finite 
difference methods. The Refined method offers a more robust and less noisy 
gradient calculation method than Basic although it does take longer to run 
optimizations using the Refined method and it is usually only useful when a 
fixed-step solver is being used.

Specifying the Cost Function
The cost function is a function that optimization algorithms attempt to 
minimize. You have the following options when selecting a cost function.

• Cost function—The default is SSE (steady-state error), which uses a 
least-squares approach.

• Use robust cost— Makes the optimizer use a robust cost function instead of 
the default least-squares cost. This is useful if the experimental data has 
many outliers.
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Setting Options for the Simulation
To optimize the response signals of a model, Simulink Response Optimization 
runs simulations of the model. You can set options for these simulations by 
selecting Optimization -> Simulation Options in the Signal Constraint 
window.

By default, the Start time and Stop time are automatically computed based on 
the start and stop times used in the model. To specify alternative start and stop 
times for the response optimization, enter them under Simulation Time.

Selecting Solvers
When running the simulation, Simulink solves the dynamic system using one 
of several solvers. You can specify several Solver Options. The Type of solver 
can be Variable-step or Fixed-step. Variable-step solvers keep the error 
within specified tolerances by adjusting the step-size the solver uses. 
Fixed-step solvers use a constant step-size. When your model’s state’s are 
likely to vary rapidly, a variable-step solver is often faster.

Variable-Step Solvers
When you select Variable-step, you can choose any of the following as the 
Solver:
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• discrete (no continuous states)
• ode45 (Dormand-Prince)
• ode23 (Bogacki-Shampine)
• ode113 (Adams)
• ode15s (stiff/NDF)
• ode23s (stiff/Mod. Rosenbrock)
• ode23t (Mod. stiff/Trapezoidal)
• ode23tb (stiff/TR-BDF2)

See the Simulink documentation for information on these solvers. 

Variable-Step Solver Options
When you select Variable-step, you can also set several other parameters that 
affect the step-size of the simulation:

• Maximum step size: the largest step-size Simulink can use during a 
simulation

• Minimum step size: the smallest step-size Simulink can use during a 
simulation

• Initial step size: the step-size Simulink uses to begin the simulation

• Relative tolerance: the largest allowable relative error at any step in the 
simulation

• Absolute tolerance: the largest allowable absolute error at any step in the 
simulation

• Zero crossing control: set to on for the solver to compute exactly where the 
signal crosses the x-axis. This is useful when using functions that are 
non-smooth and the output depends on when a signal crosses the x-axis, such 
as absolute values.

By default, Simulink automatically chooses values for these options. To choose 
your own values, enter them in the appropriate fields. For more information on 
these options, and the circumstances in which to use them, see the Simulink 
documentation.

Fixed-Step Solvers
When you select Fixed-step, you can choose any of the following as the Solver:

• discrete (no continuous states)



2 Getting Started

2-22

• ode5 (Dormand-Prince)
• ode4 (Runge-Kutta)
• ode3 (Bogacki-Shanpine)
• ode2 (Heun)
• ode1 (Euler)

See the Simulink documentation for information on these solvers.

When you select Fixed-step is selected as the solver type, you can also set 
Fixed step size which determines the step-size the solver uses during the 
simulation. By default, Simulink automatically chooses a value for this option.
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Lookup Tables
Lookup tables are used to store numeric data in a multi-dimensional array 
format. In the simpler two-dimensional case, lookup tables can be represented 
by matrices. Each element of a matrix is a numerical quantity, which can be 
precisely located in terms of two indexing variables. At higher dimensions, 
lookup tables can be represented by multidimensional matrices, whose 
elements are described in terms of a corresponding number of indexing 
variables.

Lookup tables provide a means to capture the dynamic behavior of a physical 
(mechanical, electronic, software) system. The behavior of a system with M 
inputs and N outputs can be approximately described by using N lookup tables, 
each consisting of an array with M dimensions.

Lookup tables are usually generated by experimentally collecting or artificially 
creating the input and output data of a system. In general, as many indexing 
parameters are required as the number of input variables. Each indexing 
parameter may take a value within a pre-determined set of data points, which 
are called the breakpoints. The set of all breakpoints corresponding to an 
indexing variable is called a grid. So, a system with M inputs is girded by M 
sets of breakpoints. Given the input data, the breakpoints are then used to 
locate the array elements, where the output data of the system are stored. For 
a system with N outputs, N array elements are located and the corresponding 
data are stored at these locations.

Once a lookup table is created using the input and output measurements as 
described above, the corresponding multi-dimensional array of values can be 
used in applications without the need of re-measuring the system outputs. In 
fact, only the input data is required to locate the appropriate array elements in 
the lookup table and the approximate system output can be read from the data 
stored at these locations. Therefore, a lookup table provides a suitable means 
of capturing the input-output mapping of a static system in the form of numeric 
data stored at pre-determined array locations.
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Adaptive Lookup Tables
The generation of lookup tables as described above establishes a permanent 
and static mapping of input-output behavior of a physical system. Statically 
defined lookup tables cannot accommodate the time-varying behavior 
(characteristics) of a physical plant. On the other hand, it is well known that 
the behavior of actual physical systems often vary with time due to wear, 
environmental conditions, and manufacturing tolerances. Under such 
variations, the static mapping of input-output behavior of a plant described by 
the lookup table may no longer provide a valid representation of the plant 
characteristics.

Adaptive lookup tables, on the other hand, incorporate the time-varying 
behavior of physical plants into the lookup table generation and maintenance 
process while providing all of the functionality of a regular lookup table.

The adaptive lookup table receives the input and output measurements of a 
plant's behavior, which are then used to dynamically create and update the 
content of the underlying lookup table. In addition to requiring the input data 
to create the lookup table, the adaptive lookup table also uses the output data 
of the plant to recalculate the table values. As an example, the output data of 
the plant can be collected by placing sensors at appropriate locations in a 
physical system.

The input measurements are used to locate the array elements by comparing 
these input values with the breakpoints defined for each indexing variable. 
Next, the output measurements are used to recalculate the numeric value 
stored at these array locations. However, unlike a regular table, which only 
stores the array data before the actual use of the lookup table, the adaptive 
table continuously improves the content of the lookup table. This continuous 
improvement of the table data is referred to as the adaptation or learning 
process.

The adaptation process involves statistical and signal processing algorithms to 
recapture the input-output behavior of the plant. The adaptive lookup table 
always tries to provide a valid representation of the plant dynamics even 
though the plant behavior may be time varying. The underlying signal 
processing algorithms are also robust against reasonable measurement noise 
and they provide appropriate filtering of noisy output measurements.
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Implementation of Adaptive Lookup Tables
The adaptive lookup tables are implemented as Simulink blocks. They create 
multi-dimensional lookup tables from measured or simulated data. The inputs 
and outputs of a 2-D Adaptive Lookup Table block are shown below.

Adaptive Lookup Table Block Showing Inputs and Outputs]

The following are descriptions of the input and output parameters:

• The inputs X and Zin are the coordinate data and system output 
measurements, respectively. For example, if you want to create a lookup 
table to model the behavior of an engine’s efficiency as a function of engine 
rpm and manifold pressure, X = [rpm, pressure] and Zin = [efficiency].

• The initial table data may be entered either as a dialog parameter (by 
double-clicking on the block) or as an input port (i.e., the input port Tin in 
the figure). You can start/stop/reset the adaptation through the Enable input 
port.

• The outputs of the adaptive lookup table block include the value of the 
currently adapted table cell (Zout), the number (Cell No) of that cell (which 
may be specified through the block dialog), and if required, the whole 
adapted table data (Tout).
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Adaptive Lookup Table Library
There are three adaptive lookup tables available in Simulink Parameter 
Estimation.

The three blocks are:

• “Adaptive Look-Up Table (1-D)” on page 5-2 — One dimensional adaptive 
lookup

• “Adaptive Look-Up Table (2D)” on page 5-5 — Two-dimensional adaptive 
lookup

• “Adaptive Look-Up Table (n-D)” on page 5-8 — Multidimensional adaptive 
lookup (use this for dimension 3 or higher)
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Using Adaptive Lookup Tables in Simulink Models
A typical Simulink diagram using the adaptive table block is shown below.

Simulink Diagram Using an Adaptive Lookup Table

In this figure, the Experimental Data block imports a set of experimental data 
into the Simulink environment through MATLAB workspace variables. The 
initial table is specified through a constant matrix block. When the simulation 
runs, the initial table begins to adapt to new data inputs and the resulting 
table is copied to the block’s output.

Real-Time Lookup Tables
You can use experimental data from sensor measurements collected by 
running various test on a system in real time. The measured data is then sent 
to the adaptive table block in order to generate a lookup table describing the 
relation between the system inputs and output.

The adaptive lookup table block may also be used in real-time environment, 
where some time-varying properties of a system need to be captured. This can 
be done by generating C code using the Real-Time Workshop, which can then 
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be run in xPC or dSpace environment. Since the adaptation may be 
started/stopped/reset if desired, some logic may be used to adapt the table data 
only when it is desired. The cell number output, and the Enable and Lock 
inputs facilitate this process. The Enable input is used to start/stop the 
adaptation, while the Lock input is used to update only one of the table cells. 
The Lock input combined with some logic using the Cell number output provide 
the means for updating only the desired table cells during a simulation run.

Setting Adaptive Lookup Table Parameters
Adaptive lookup tables are highly configurable, as shown below.

n-D Adaptive Lookup Table Dialog Box

The number of dimensions for the adaptive 
look-up table.

A set of one-dimensional vectors that 
contains possible block input values for the 
input variables.

Use this port to input table data. 

The initial table output values. This (n-D) 
array must be of size (n-1)-by-(n-1)... -by- 
(n-1), (D times) where D is the number of 
dimensions and n is the number of input 
breakpoints.

Number values assigned to cells. This 
vector must be the same size as the table 
data array, and each value must be unique. 

Sample mean averages all the values 
received within a cell. Sample mean with 
forgetting gives more weight to the new 
data. 

A number between 0 and 1 that regulates 
the weight given to new data during the 
adaptation.

Checkboxes for customizing the I/O 
channels of the block and allowing 
adaptation to out-of-range data.
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For details on how to set these parameters, see the individual reference pages.
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Example: N-D Adaptive Lookup Table
This example shows an N-D Adaptive Lookup table at work and includes many 
of the key features associated with adaptive lookup tables. Type 

enginetable

at the MATLAB prompt to open this model.

This model has several key features:

• Input —The adaptive lookup table input is the experimental data. It is also 
possible to make the original table itself an input.

• An enable feature—You can turn the adaptation on and off during the 
estimation to see how the basic features work.

• A lock feature—You can lock the table so that only one cell is adapting. This 
is useful if you have one section in your data that is highly erratic or 
otherwise difficult for the algorithm to handle.

• Output—Adaptive lookup breakpoints are the output data
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Running the Example
To start the simulation, pull down the Simulation menu and choose the Start 
command or, on Microsoft Windows, click the Start button on the Simulink 
toolbar (the start button is a black triangle). The simulation begins by 
populating the adaptive lookup table with random data. This figure shows the 
input and adaptive data side by side.
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As the simulation progresses, the surface on the right adapts to match the 
measured input data. This figure shows the final adaptation.

The fit is quite good. Try using the enable and lock features to see how they 
change the adaptation. 
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4
Estimating From the 
Command Line

Simulink Parameter Estimation provides an object-oriented command-line API for the estimation 
problem.

Introduction (p. 4-2) A brief discussion of the estimation problem in an 
object-oriented context

Example: Estimating Parameters and 
Initial Conditions of the F14 Model 
(p. 4-4)

How to create and simulate an estimation project from 
the command line

Creating and Customizing Estimation 
Projects (p. 4-12)

Using properties and methods to specify features of the 
estimation project

“Creating a Transient Data Object” on 
page 4-13

How to instantiate and use transient data objects, which 
contain input and output data.

“Creating Parameter Objects” on 
page 4-19

How to instantiate and use parameter objects, which 
maintain data about parameters you want to estimate.

“Creating State Data Objects” on 
page 4-23

How to instantiate and use state data objects, which 
contain information about states in your Simulink model.

“Creating Transient Experiment 
Objects” on page 4-26

How to instantiate and use transient experiment objects.
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Introduction
In addition to the Parameter Estimation editor, Simulink Parameter 
Estimation provides a collection of functions for performing parameter and 
state estimation. These functions perform the same tasks as the editor, but 
have the advantages of command-line execution. When you perform a state or 
parameter estimation using the Simulink Parameter Estimation GUI, 
Simulink Parameter Estimation creates MATLAB objects for all the states and 
parameters of your model. If you have a large number of states or parameters, 
this can use up large chunks of memory and cause computational delays. Using 
the command-line approach, only those states and parameters that you select 
are assigned MATLAB objects, which is more efficient.

In addition, the command-line approach is useful for batch jobs, where, for 
example, you may want to test out large numbers of models.

Note  Simulink Parameter Estimation uses MATLAB objects to perform 
estimation tasks. This chapter discusses what you need to know about 
object-oriented programming for using Simulink Parameter Estimation, but 
see “MATLAB Classes and Objects” for a detailed description of the rules of 
object-oriented programming in MATLAB. Also, see *** for a discussion of dot 
notation if you are unfamiliar with this feature.

The command-line interface for Simulink Parameter Estimator requires a 
Simulink model as a starting point for analysis and estimation. Once you have 
selected a candidate model, the estimation process consists of five steps.

• Defining experiments consisting of empirical data sets and the operating 
conditions and/or initial conditions of your model

• Selecting the variables and states to be estimated

• Performing the estimation

• Reviewing the results and iterating as necessary 

• Validation of estimation results

The following sections discuss these topics:

• “Example: Estimating Parameters and Initial Conditions of the F14 Model” 
— How to perform the five steps using command-line functions
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• “Creating and Customizing Estimation Projects” — How to use methods and 
properties to customize your estimation project’s features
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Example: Estimating Parameters
and Initial Conditions of the F14 Model

To define an experiment, you must start with a Simulink model. For this 
example, type

f14

to load the F14 fighter jet model into the MATLAB workspace. The figure below 
shows the f14 model.

F14 Fighter Model

This example outlines the basics of constructing an estimation project using 
object oriented code. Only what you need to run the example is presented; see 
“Creating and Customizing Estimation Projects” on page 4-12 for details on all 
the properties and methods associated with parameter estimation.



Example: Estimating Parameters and Initial Conditions of the F14 Model

4-5

Baseline Simulation
Prior to running an estimation, you will need a baseline for data comparison. 
First, you must choose parameters and states’ initial conditions for estimation. 
This example uses Ta, the actuator time constant, and Zd and Md, Then use the 
code below to run the Simulink F14 model. Note that this is standard Simulink 
code and does not involve Simulink Parameter Estimation in any way. See sim 
for information about running Simulink models from the MATLAB command 
line.

%% Open the model and load experimental data.
open_system('f14')
load f14_estim_data % Load empirical I/O data.

%% Set initialize unknown parameters 
% Actuator time constant (ideal: Ta = 0.05)
Ta = 0.5;

% Aircraft dynamic model parameters (ideal: Md = -6.8847, 
% Zd = -63.998)
Md = -1; Zd = -80;

%% Plot measured data and simulation results
[T,X,Y] = sim('f14', time, [], [time iodata(:,1)]);
plot(time, iodata(:,2:3), T, Y, '--');
legend( 'Measured angle of attack',  'Measured pilot g force', ...
        'Simulated angle of attack', 'Simulated pilot g force');
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This figure appears.

Baseline Comparison of Measured and Simulated F14 I/O Data

As you can see, the measured and simulated data are a poor match. The rest of 
this section describes how to estimate values for Ta, Zd, and Md that result in a 
better match of data sets.

Creating a Transient Experiment Object
Once you have a model, and have identified the parameters you want to 
estimate, the next step is to create the objects required for an estimation. 
ParameterEstimator is both the name of the class and the object instantiated 
by that class. Classes are created by a constructor; objects are created by 
invoking the class name with parameters.

First, create an estimation project object. This is the constructor syntax.

h = ParameterEstimator.TransientExperiment('f14');

MATLAB responds with information about the F14 model.
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Experimental transient data set for the model 'f14':

Output Data
   (1) f14/alpha (rad)
   (2) f14/Nz Pilot (g)

Input Data
   (1) f14/u

Initial States
   (1) f14/Actuator Model
   (2) f14/Aircraft Dynamics Model/Transfer Fcn.1
   (3) f14/Aircraft Dynamics Model/Transfer Fcn.2
   (4) f14/Controller/Alpha-sensor Low-pass Filter
   (5) f14/Controller/Pitch Rate Lead Filter
   (6) f14/Controller/Proportional plus integral compensator
   (7) f14/Controller/Stick Prefilter
   (8) f14/Dryden Wind Gust Models/Q-gust model
   (9) f14/Dryden Wind Gust Models/W-gust model

Creating Parameter Objects for Estimation
To activate parameters for estimation, you must create parameter objects for 
the parameters you want to estimate.For this example, use the Ta, the actuator 
time constant, and Zd and Md, the vertical velocity and pitch rate gains, 
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respectively. The Zd and Kf gains are located in the f14: Aircraft Dynamics 
subsystem.

f14 Aircraft Dynamics Subsystem

First, create ParameterEstimator objects for the parameters you want to 
estimate.

%% Create objects to represent parameters.
hPar(1) = ParameterEstimator.Parameter('Ta');
set(hPar(1), 'Minimum', 0.01, 'Maximum', 1, 'Estimated', true)

hPar(2) = ParameterEstimator.Parameter('Md');
set(hPar(2), 'Minimum', -10, 'Maximum', 0, 'Estimated', true)

hPar(3) = ParameterEstimator.Parameter('Zd');
set(hPar(3), 'Minimum', -100, 'Maximum', 0, 'Estimated', true)

%% Create objects to represent estimated initial states.
hIc(1) = ParameterEstimator.State('f14/Actuator Model');
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set(hIc(1), 'Minimum', 0, 'Estimated', false);

You can also use dot notation here. For example, instead of 

set(hPar(2), 'Minimum', -10, 'Maximum', 0, 'Estimated', true)

you can write

hPar(2).Estimated='true';
hPar(2).Minimum=-10;
hPar(2).Maximum=0;

Assigning Experimental Data 
to Inputs and Outputs of the Model
Once you’ve created a ParameterEstimator object, assign input and output 
experimental (i.e., empirical) data.

%% Create objects to represent the experimental data sets.
hExp = ParameterEstimator.TransientExperiment(gcs);
set(hExp.InputData(1), 'Data', iodata(:,1), 'Time', time);

set(hExp.OutputData(1), 'Data', iodata(:,2), 'Time', time, 
'Weight', 5);
set(hExp.OutputData(2), 'Data', iodata(:,3), 'Time', time);

Creating an Estimation Object 
and Running the Estimation
Finally, create an estimation object and run the estimation, using gcs to get the 
full path name to the Simulink model.

hEst = ParameterEstimator.Estimation(gcs, hPar, hExp);
hEst.States = hIc;

%% Setup estimation options
hEst.OptimOptions.Algorithm    = 'lsqnonlin';
hEst.OptimOptions.GradientType = 'refined';
hEst.OptimOptions.Display      = 'iter';

%% Run the estimation
estimate(hEst);
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%% Plot measured data and final simulation results
[T,X,Y] = sim('f14', time, [], [time iodata(:,1)]);
figure
plot(time, iodata(:,2:3), T, Y, '--');
legend( 'Measured angle of attack',  'Measured pilot g force', ...
        'Simulated angle of attack', 'Simulated pilot g force');

This figure shows the results of the estimation.

The measured and simulated outputs now appear to be a close match. Next, 
look at the estimated values to see how they compare with the default values 
of the F14 model.

%% Look at the estimated values
find(hEst.Parameters, 'Estimated', true)
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MATLAB responds with

1) Parameter data for 'Ta':

       Parameter value : 0.05
         Initial guess : 0.5

             Estimated : true

          Referenced by:

(2) Parameter data for 'Md':

       Parameter value : -6.884
         Initial guess : -1

             Estimated : true

          Referenced by:

(3) Parameter data for 'Zd':

       Parameter value : -63.99
         Initial guess : -80

             Estimated : true

          Referenced by:

You can verify that these values match the default values of the f14 model by 
clearing your workspace, loading the model, and checking the values.

clear all
f14
whos
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Creating and Customizing Estimation Projects
The following sections describe in more detail how to create and modify 
transient data and estimation objects.

First, a quick look at terminology: 

• Objects are instantiations of classes. 

• Classes contain, or rather, define, properties and methods. 

• You use a constructor to create an instance of an object, and use the set 
method or dot notation to modify the properties of your objects.
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Creating a Transient Data Object
Estimating parameters requires a transient data object, which you create 
using a constructor. The syntax to create a transient data object is

h = ParameterEstimator.TransientData( block ); % I/O port block
h = ParameterEstimator.TransientData( block , portnumber); % 
Internal block
h = ParameterEstimator.TransientData( block , data, time);
h = ParameterEstimator.TransientData( block , data, Ts);
h = ParameterEstimator.TransientData( block , portnumber, data, 
time);
h = ParameterEstimator.TransientData( block , portnumber, data, 
Ts);
h = ParameterEstimator.TransientData( block , ..., Property , 
Value, ...)o.

Properties of Transient Data Objects
This table lists the properties of the transient data object and the associated 
input parameters.

Transient Data Object Properties 

Property Description

Block Name of the Simulink block with which the Data is 
associated. Must be a string.

PortType The type of the signal that this object represents is deter-
mined in the constructor from the Block property, which 
may be Inport, Outport, or Signal.

PortNumber For data associated with the outputs of regular blocks or 
subsystems, this property specifies the output port number 

of interest. The default value is one.
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Dimensions Dimensions of the data required for this data set. It is 
computed from the CompiledPortDimensions property 
of the appropriate port of the Block, and it defines the 
size of other properties. Currently, Simulink supports 
scalar, vector, or matrix signals, so Dimensions is either 
a scalar or a 1-by-2 array.

Data Actual experimental data. Its size must be consistent 
with the Dimensions property. To conform with 
Simulink conventions, the data is stored in the following 
formats:

• Scalar or vector-valued data. The Data is of the 
form Ns m, where Ns is the number of data 
samples, and m is the number of channels in the 
signal.

• Multi-dimensional data (matrix and higher 
dimensions). The Data is of the form m1 . . .  mn 
Ns, where Ns is the number of data samples, and 
mi is the number of channels in the ith dimension 
of the signal.

• For missing or unspecified data NaNs are used.

Ts
Tstart
Tstop

For uniformly-sampled data, Ts is the sample time and 
Tstart is the start time of the signal. The stop time 
Tstop and the time vector Time are given by

Tstop = Tstart + Ts * (Ns -1)

Time = Tstart : Ts : Tstop

For nonuniform time data Ts is set to NaN, and the start 

and stop times are calculated from the time vector.

Transient Data Object Properties  (Continued)

Property Description
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Time The time data in column vector format. The length of 
Time must be consistent with the number of 
samples in Data.

• For a non-uniformly spaced Time vector, its length 
should match the length of Data.

• Otherwise, Time is automatically adjusted based 
on the length of Data.

Modifying Ts will reset Time internally. In this case, 
Time is a virtual property whose value is computed from 
Ts and Tstart when you request it. The rules for setting 
time related properties are

• Modifying Time will set 

Ts = NaN 
Tstart = Time(1)

If the time vector is uniformly spaced, a sample 
time Ts is calculated.

• Modifying Tstart translates Time forward or 
backward.

• Modifying Ts sets Time = [] internally and generates 
it when required by the simulation.

Weight The weight associated with each channel of this data 
set. It is used to specify the relative importance of 
signals. The default value is 1.

InterSample  Interpolation method between samples can be zero-order 

hold (zoh) or first-order hold (foh). This property
is used for data preprocessing.

Transient Data Object Properties  (Continued)

Property Description
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Modifying Transient Data Object Properties
Once a transient data object is created, you can modify its properties using this 
syntax.

in1.Data = rand(2,1,10); % 10 data values each of size [2 1]
in1.Time = 1:10; % Automatically converted to column vector

Some properties (e.g., Weight) support scalar expansion with respect to the 
value of Dimensions property.

Example: Assigning Input Port Data
To assign data to an Input port with 23 port dimensions, use

in1 = ParameterEstimator.TransientData(gcb, rand(2,3,100), 0.05)

MATLAB responds with

(1) Transient data for Inport block 'portdata_test_noSim/By//Pass 
Air Valve Voltage':
Sampling interval: 0.05 sec.
Data set has 100 samples and 6 channels.

Using Class Methods
The description of some of the important methods is given below.

• select—Used to extract a portion of data. The result is returned in a new 
transient data object.
in2 = select(in1, Sample , 10:100); % 91 samples

in3 = select(in1, Range , [1 4]); % Samples for 1<t<4 
% ... or an alternative

in3 = select(in1, Sample , find(in1.Time > 1 & in1.Time < 4));

To extract data from a subset of available channels, use 
in4 = select(in1, Channel , [1 3 2]); 
% channels 1,3,and 2 in this order

• hiliteBlock—Highlights the block associated with this object in the 
Simulink diagram.
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• update—Updates the object after the Simulink model has been modi.ed in 
some way. If the Dimensions property value changes then the other 
properties are reset to their default values.

Helper Functions: Seven Ways to Represent 
Sampling Instants
Time is represented in @TransientData objects ins seven different ways. 
An efficient storage method is required for uniformly spaced data (e.g., 
using sampling and start times only) as well as the ability to store a 
non-uniform time vector. 

Only Time, Ts, and Tstart are writable time properties. However, there 
are other ways of specifying time data. Given a data array of length n 
and a combination of at most two of the following parameters

• Sampling time, Ts

• Start time, ti

• Final time, tf
• Time vector, (t0, t1, . . . , tn-1)

you can calculate the corresponding Time vector of length n. The 
combinations are

1 Given Ts  t = {kTs, k = 0, . . . , n . 1} 

2 Given Ts, ti  t = {ti + kTs, k = 0, . . . , n . 1} 

3 Given Ts, tf  t = {tf . (n . 1 . k)Ts, k = 0, . . . , n . 1}

4 Given ti, tf  t = {ti + kTs, k = 0, . . . , n . 1, Ts = tf-tin-1 }

5 Given tf  t = {kTs, k = 0, . . . , n . 1, Ts = tfn-1} 

6 Given (t0, t1, . . . , tn-1)  t = {tk, k = 0, . . . , n . 1} 

7 Given ti, (t0 = 0, t1, . . . , tn-1)  t = {ti + tk, k = 0, . . . , n . 1}.
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Method for Logging Internal Block Signals.
When a data object represents an internal block signal, signal logging is used 
to access the output signal of that block. The following piece of code, which is 
mainly implemented in estimation methods, illustrates this process.

% Create data object
sig1 = ParameterEstimator.TransientData(gcb, 2);
% ...
% Configure port for signal logging before simulation
% Output port handle
h = get_param( sig1.Block, 'Object' );
hPort = handle( h.PortHandles.Outport(sig1.PortNumber) );
% Signal name
Name = [ sig1.Block '/' int2str(sig1.PortNumber) ];
Name = regexprep(Name, '\n|\n\r', ' ');
Name = regexprep(Name, ' ', '_');
Name = regexprep(Name, '/', '_')
% Configure signal logging properties
hPort.Name = 'SPE_signal'; % Doesn t need to be unique
hPort.TestPoint = 'on';
hPort.DataLogging = 'on';
hPort.DataLoggingName = Name; % Should be unique
hPort.DataLoggingNameMode = 'Custom';
% ...
% Extract signal data after simulation
% Signal logging name
LoggingName = get_param(gcs, 'SignalLoggingName');
hLog = evalin('base', LoggingName);
sig1_data = hLog.extract(Name);
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Creating Parameter Objects
The @Parameter object refers to the parameters of the Simulink model marked 
for estimation. Some of the Simulink model parameters are to be estimated and 
storage is required for the initial values, current values, ranges, etc. One 
@Parameter object corresponds to each parameter in the Simulink model to be 
potentially estimated. These objects represent estimation parameters of any 
type such as scalars, vectors, and multi-dimensional arrays. 

Constructor
The syntax to create a parameter object is

h = ParameterEstimator.Parameter('Name');
h = ParameterEstimator.Parameter('Name', Value);
h = ParameterEstimator.Parameter('Name', Value, Minimum, 
Maximum);
h = ParameterEstimator.Parameter('Name', ..., 'Property', Value, 
...);

In the first case, Name is a workspace variable. In the other cases, Name 
does not need to exist in the workspace at the time of object creation. 
However, it is required at estimation time.

Properties of Parameter Objects
The description of some of the important properties of parameter objects is given 
in the table below.

Table 4-1:  Parameter Object Properties 

Property Description

Name Parameter name. The parameter can be a 
multi-dimensional array of any size.

Dimensions Dimensions of the value of the parameter. This is the 
de.ning property for the size of other properties.

Value The current or estimated value of the parameter. This is 
the defining property for size checking and scalar 
expansions.
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Estimated A boolean array of the same size as that of Value. 
Depending on the value of the elements of the 
Estimated property, the behavior of the corresponding 
elements of Value are as follows:

• The elements of Value is estimated if the 
corresponding elements in Estimate are set to 
true. The result is stored in the Value property.

• The elements of Value are not estimated if the 
corresponding elements in Estimated are set to false. 
However, these elements are used to reset the 
corresponding workspace parameter during 
estimations.

This property is set to false by default, meaning that the 
parameter value is not estimated.

 InitialGuess Separate properties are required to hold the initial and 
current values of the parameters. So, when the 
InitialGuess property is initialized with a value, both 
it and the Value property are assigned the same value.

Depending on the value of the elements of the 
Estimated property, the behavior of the corresponding 
elements of InitialGuess are as follows:

• If any element in Estimated is set to true, then the 
corresponding element of InitialGuess is used to 
initialize the workspace parameter during 
estimations.

• If any element in Estimated is set to false, then the 
corresponding element of InitialGuess will not be 
used in any way.

Table 4-1:  Parameter Object Properties  (Continued)

Property Description
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Example: F14 Model
To create a parameter object for the parameter Ta in the f14 model, use

par1 = ParameterEstimator.Parameter('Ta')
(1) Parameter data for 'Ta':
Parameter value : 0.05
Initial value : 0.05
Estimated : false
Referenced by the blocks:
f14/Actuator Model

Example: Gain Matrix
To create a parameter object for a matrix parameter K of size 4-by-1, use

par1 = ParameterEstimator.Parameter('K', [1 2 3 4]')
(1) Parameter data for 'K':
Parameter value : [1;2;3;4]
Initial value : [1;2;3;4]
Estimated elements : [false;false;false;false]
Referenced by the blocks:

Modifying Properties
Once a parameter object is created, its properties can be modi.ed using 
the following syntax:

par1.Estimated = true; % Estimate this parameter

Most of the properties, for example, Estimated and TypicalValue support 
scalar expansion with respect to the size of Value.

Minimum, 
Maximum

Parameter range

TypicalValue The typical values of the parameters. This property is 
used in estimations for scaling purposes. The default 
value is one

Table 4-1:  Parameter Object Properties  (Continued)

Property Description
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Using Class Methods
The description of some of the important methods is given below:

• hiliteBlock—Highlights the referenced blocks associated with parameter 
objects in the Simulink diagram.

• update—Updates the parameter object after the Simulink model has been 
modified in some way. If the size of Value property changes, then the other 
properties are reset to their default values
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Creating State Data Objects
This object defines the states of a dynamic Simulink block. It is used in a 
transient estimation context to define known initial conditions of a block 
diagram model, and in a steady-state estimation context to define the known 
states of the model. 

For example, the Simulink model of a simple mass-spring-damper system has 
two integrator blocks to generate velocity and position signals from 
acceleration and velocity values, respectively, during simulation. If the 
corresponding physical system is known to be at rest at the beginning of an 
experiment, the initial states (velocity and position) of these integrators are 
zero. So, two @StateData objects can be created to describe these known initial 
conditions.

This is the syntax for creating this object.

h = ParameterEstimator.StateData('block');
h = ParameterEstimator.StateData('block', data);
h = ...
ParameterEstimator.StateData('block', ...,
'Property',Value, ...);

In the first constructor, the state vector is initialized from the model containing the 
block.

Properties of the State Data Object
The description of some of the important properties is given in the table below.

Table 4-2:  Properties of the State Data Object 

Property Description

Block Name of the Simulink block whose states are defined by 
this object

Dimensions Scalar value to store the number of states of the 
relevant block
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Example: Initial Condition Data
To create an empty initial condition object for the 
engine_idle_speed/TransferFcn2, use

st1 = ParameterEstimator.StateData ...
('engine_idle_speed/Transfer Fcn2', [1 2])

Data Column vector to store the initial value of the state for 
the block speci.ed by this object. The length of this 
vector should be consistent with the Dimensions 
property. Since the underlying Simulink model also 
stores an initial state vector for all dynamic blocks, the 
following conventions are used to resolve the initial 
state values during estimations:

• If Data is not empty, use it when forming the 
state vector.

• If Data is empty, get the state vector for this block 
from the model. This behavior is useful when using 
helper methods to create an experiment object that 
instantiates empty state data objects for all dynamic 
blocks in the Simulink model.

• If there is no state data object for a dynamic block in 
the model, get the state vector of that block from the 
model. This behavior is useful for command-line 
users, when there are too many states in the model 
and only a few of them have to be set to a different 
initial values.

Ts Sampling time of discrete blocks. Set to zero for 
continuos blocks. This property is read-only and is 
currently used for information only.

BlockInfo Structure to hold data about SimMechanics or 
SimPower Systems blocks with states

Table 4-2:  Properties of the State Data Object  (Continued)

Property Description
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(1) State data for f14/Dryden Wind Gust Models/W-gust model  
block:
The block has 2 continuous state(s).
State value : [1;2]

Modifying Properties
Once a state data object is created, its properties can be modi.ed using the 
following syntax.

st1.Data = [2 3]; % State vector of size 2

Some properties (e.g., Data) support scalar expansion with respect to the value 
of Dimensions property.

Using Class Methods
The description of some of the important methods is given below.

• hiliteBlock—Highlights the block associated with this object in the 
Simulink diagram

• update—Updates the object after the Simulink model has been modi.ed in 
some way. If the Dimensions property value changes, the other properties 
are reset to their default values.
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Creating Transient Experiment Objects 
The @TransientExperiment object encapsulates data measured at the input 
and output ports of a system during a single experiment, as well as the system’s 
known initial states.

The syntax to create a transient experiment object is

h = ParameterEstimator.TransientExperiment('model');

h = ...
ParameterEstimator.TransientExperiment('model', hIn, hOut, hIc);

h = ...
ParameterEstimator.TransientExperiment('model', ...
{'in1', ...}, {'out1', ...}, {'ic1', ...});

h = ParameterEstimator.TransientExperiment('model', ..., 
'Property', Value, ...);

The second constructor is used when data objects are available. The third is 
used when the names of blocks to work with are known. An empty argument in 
these constructors ({} or []) means the default behavior, which is to use no 
I/O ports or states depending on the position of the empty argument.



Creating Transient Experiment Objects

4-27

Properties of Transient Experiment Objects
The description of some of the important properties is given in the table below.

Example: Creating an f14 Experiment
To create an empty transient experiment for the f14 model, use

exp1 = ParameterEstimator.TransientExperiment('f14 )
Experimental (Transient) data set for the model f14 :
Outputs
(1) f14/alpha (rad)
(2) f14/Nz Pilot (g)
Inputs
(1) f14/u
Initial States
(1) f14/Actuator Model
(2) f14/Aircraft Dynamics Model/Transfer Fcn.1
(3) f14/Aircraft Dynamics Model/Transfer Fcn.2

Table 4-3:  Properties of Transient Experiment Objects

Property Description

Model Simulink model with which this experiment is 
associated

InputData, 
OutputData

Transient data objects associated with appropriate i/0 
blocks in the Model. Blocks with unassigned objects or 
objects with no data will not be used in estimations, 
meaning:

• For input ports: assign zeros to these ports/channels 
during simulation.

• For output ports: don’t use these ports/channels in 
the cost function.

InitialStates State data objects associated with appropriate 
dynamic blocks in the Model.

InitFcn Function to be executed to configure the model for 
this particular experiment
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(4) f14/Controller/Alpha-sensor Low-pass Filter
(5) f14/Controller/Pitch Rate Lead Filter
(6) f14/Controller/Proportional plus integral compensator
(7) f14/Controller/Stick Prefilter
(8) f14/Dryden Wind Gust Models/Q-gust model
(9) f14/Dryden Wind Gust Models/W-gust model

Example: Creating f14 Experiment Using Block 
Names
To create an empty transient experiment where data is available only for the 
first output and the Actuator Model block, use

exp1 = ParameterEstimator.Experiment('f14', {}, ...
{'f14/alpha (rad)'},
{'f14/Actuator Model'})
Experimental (Transient) data set for the model 'f14': 
Outputs
(1) f14/alpha (rad)
Inputs(none)
Initial States
(1) f14/Actuator Model

Example: Creating Van der Pohl Experiment From 
User Objects
To create a transient experiment from user objects for I/Os and states, use

out1 = ParameterEstimator.TransientData('vdp/Out1');
ic1 = ParameterEstimator.StateData('vdp/x1');
exp1 = ParameterEstimator.TransientExperiment...
(gcs, [], out1, ic1);
Experimental (Transient) data set for the model 'vdp':
Outputs
(1) vdp/Out1
Inputs
(none)
Initial States
(1) vdp/x1
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Modifying Properties
The objects referred in InputData, OutputData, and InitialStates 
properties can be modified or removed as necessary.

Using Class Methods
The description of one important method is given below:

• update: Updates the object after the Simulink model has been modi.ed in 
some way. The object listed in InputData, OutputData, InitialStates 
properties are updated in turn.
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5

Block Reference

Simulink Parameter Estimation includes three blocks that instantiate adaptive lookup tables in 
Simulink models.

• Adaptive Look-Up Table (1-D) on page 5-2

• Adaptive Look-Up Table (2D) on page 5-5

• Adaptive Look-Up Table (n-D) on page 5-8
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5Adaptive Look-Up Table (1-D)Purpose Perform a one-dimensional adaptive table lookup 

Description The Adaptive Look-Up Table (1-D) block creates a one-dimensional adaptive 
lookup table by dynamically updating the underlying lookup table. The block 
uses the outputs, ydata, of your system to do the adaptations. 

Each indexing parameter U may take a value within a set of adapting data 
points, which are called breakpoints. Two breakpoints in each dimension define 
a cell. The set of all breakpoints in one of the dimensions defines a grid. In the 
one-dimensional case, each cell has two breakpoints, and the cell is a line 
segment.

You can use the Adaptive Look-Up Table (1-D) to model time-varying systems. 

Data Type 
Support

Doubles only
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Dialog Box

First input (row) breakpoint set
The vector of values containing possible block input values. The input 
vector must be monotonically increasing.

Make initial table an input
Selecting this box forces the Adaptive Look-Up Table (1-D) block to ignore 
the Table data (initial) parameter. Instead, a new port appears with Tin 
next to it. Use this port to input table data.

Table data (initial)
The initial table output values. This vector must be of size N-1, where N is 
the number of breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the 
table data vector, and each value must be unique. 
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Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean 
averages all the values received within a cell. Sample mean with forgetting 
gives more weight to the new data. How much weight is determined by the 
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data 
during the adaptation. 0 means short memory (last data becomes the table 
value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive look-up 
table. 0 = disable; 1 = enable; 2 = reset to initial table data.

Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a 
simulation run. 0 = unlock; 1 = lock current cell.

Adapt to out-of-range data 
Extrapolate beyond the extreme breakpoints.
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5Adaptive Look-Up Table (2D)Purpose Perform two-dimensional adaptive table lookup

Description The Adaptive Look-Up Table (2-D) block creates a two-dimensional adaptive 
lookup table by dynamically updating the underlying look-up table. The block 
uses the outputs (ydata) of your system to do the adaptations. 

Each indexing parameter U may take a value within a set of adapting data 
points, which are called breakpoints. wo breakpoints in each dimension define 
a cell. The set of all breakpoints in one of the dimensions defines a grid. In the 
two-dimensional case, each cell has four breakpoints and is a flat surface.

You can use the Adaptive Look-Up Table (2-D) to model time-varying systems.

Dialog Box

First input (row) breakpoint set
The vector of values containing possible block input values for the first 
input variable. The first input vector must be monotonically increasing.
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Second input (column) breakpoint set
The vector of values containing possible block input values for the second 
input variable. The second input vector must be monotonically increasing.

Make initial table an input
Selecting this box forces the Adaptive Look-Up Table (2-D) block to ignore 
the Table data (initial) parameter. Instead, a new port appears with Tin 
next to it. Use this port to input table data.

Table data (initial)
The initial table output values. This 2-by-2 matrix must be of size 
(n-1)-by-(m-1), where n is the number of first input breakpoints and m is 
the number of second input breakpoints.

Table numbering data
Number values assigned to cells. This matrix must be the same size as the 
table data matrix, and each value must be unique. 

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean 
averages all the values received within a cell. Sample mean with forgetting 
gives more weight to the new data. How much weight is determined by the 
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data 
during the adaptation. 0 means short memory (last data becomes the table 
value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive look-up 
table. 

Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a 
simulation run.
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Adapt to out-of-range data 
Extrapolate beyond the extreme breakpoints.
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5Adaptive Look-Up Table (n-D)Purpose Create an adaptive lookup table of arbitrary dimension

Description The Adaptive Look-Up Table (n-D) block creates an adaptive lookup table of 
arbitrary dimension by dynamically updating the underlying lookup table. The 
block uses the outputs of your system to do the adaptations. 

Each indexing parameter may take a value within a set of adapting data 
points, which are called breakpoints. Breakpoints in each dimension define a 
cell. The set of all breakpoints in one of the dimensions defines a grid. In the 
n-dimensional case, each cell has two n breakpoints and is an (n-1) 
hypersurface.

You can use the Adaptive Look-Up Table (n-D) to model time-varying systems.

Dialog Box

Number of table dimensions
The number of dimensions for the adaptive look-up table.
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Table breakpoints
A set of one-dimensional vectors that contains possible block input values 
for the input variables. Each input row must be monotonically increasing, 
but the rows do not have to be the same length. For example, if the Number 
of dimensions is 3, you can set the table breakpoints as follows:

{[1 2 3], [5 7], [1 3 5 7]}

Make initial table an input
Selecting this box forces the Adaptive Look-Up Table (n-D) block to ignore 
the Table data (initial) parameter. Instead, a new port appears with Tin 
next to it. Use this port to input table data. Because of Simulink’s current 
limitations, 

Table data (initial)
The initial table output values. This (n-D) array must be of size 
(n-1)-by-(n-1) ... -by- (n-1), (D times) where D is the number of dimensions 
and n is the number of input breakpoints.

Table numbering data
Number values assigned to cells. This vector must be the same size as the 
table data array, and each value must be unique. 

Adaptation method
Choose Sample mean or Sample mean with forgetting. Sample mean 
averages all the values received within a cell. Sample mean with forgetting 
gives more weight to the new data. How much weight is determined by the 
Adaptation gain parameter.

Adaptation gain (0 to 1)
A number between 0 and 1 that regulates the weight given to new data 
during the adaptation. 0 means short memory (last data becomes the table 
value), and 1 means long memory (average all data received in a cell).

Make adapted table an output
Selecting this box creates an additional output port for the adapted table.

Add adaptation enable/disable/reset port
Add an input port that enables, disables, or resets the adaptive look-up 
table. 
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Add cell lock enable/disable port
A port that provides the means for updating only specified cells during a 
simulation run.
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